Fish intelligence, sentience and ethics

Abstract

Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people’s perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal’s intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any non-human vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate.

This is a preview of subscription content, log in to check access.

References

  1. Agrillo C, Piffer L, Bisazza A, Butterworth B (2012) Evidence for two numerical systems that are similar in humans and guppies. PLoS One 7(2):e31923

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Agrillo C, Petrazzini MEM, Dadda M (2013) Illusionary patterns are fishy for fish, too. Front Neural Circuits 7:137

    PubMed Central  PubMed  Google Scholar 

  3. Amoser S, Ladich F (2005) Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats? J Exp Biol 208:3533–3542

    PubMed  Google Scholar 

  4. Antell SE, Keating DP (1983) Perception of numerical invariance in neonates. Child Dev 54:695–701

    CAS  PubMed  Google Scholar 

  5. Appleby MC, Sandøe P (2002) Philosophical debate on the nature of well-being: implications for animal welfare. Anim Welf 11:283–294

    CAS  Google Scholar 

  6. Arnold KE (2000) Kin recognition in rainbowfish (Melanotaenia eachamensis): sex, sibs and shoaling. Behav Ecol Sociobiol 48:385–391

    Google Scholar 

  7. Aronson LR (1956) Further studies on orientation and jumping behavior in the goby fish, Bathygobius soporator. Anat Rec 125:606

    Google Scholar 

  8. Ashley PJ, Ringrose S, Edwards KL, Wallington E, McCrohan CR, Sneddon LU (2009) Effect of noxious stimulation upon antipredator responses and dominance status in rainbow trout. Anim Behav 77:403–410

    Google Scholar 

  9. Balda RP, Kamil AC (1992) Long-term spatial memory in clark’s nutcracker, Nucifraga columbiana. Anim Behav 44:761–769

    Google Scholar 

  10. Barton RA, Venditti C (2013) Human frontal lobes are not relatively large. Proc Natl Acad Sci 110:9001–9006

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Bekoff M (2006) Animal passions and beastly virtues: reflections on redecorating nature. Temple University Press, Philadelphia

    Google Scholar 

  12. Bekoff M, Sherman PW (2004) Reflections on animal selves. Trends Ecol Evol 19:176–180

    PubMed  Google Scholar 

  13. Beukemaj JJ (1970) Acquired hook-avoidance in the pike Esox lucius L. fished with artificial and natural baits. J Fish Biol 2:155–160

    Google Scholar 

  14. Bhat A, Magurran AE (2006) Benefits of familiarity persist after prolonged isolation in guppies. J Fish Biol 68:759–766

    Google Scholar 

  15. Bibost A-L, Brown C (2013) Laterality enhances schooling position in rainbowfish, Melaotaenia spp. PLoS One 8(11):e80907

    PubMed Central  PubMed  Google Scholar 

  16. Biebach H, Gordijn M, Krebs JR (1989) Time-and-place learning by garden warblers, Sylvia borin. Anim Behav 37:353–360

    Google Scholar 

  17. Bisazza A, Brown C (2011) Lateralization of cognitive functions in fish. In: Brown C, Krause J, Laland KN (eds) Fish cognition and behavior. Wiley, Oxford, pp 298–324

    Google Scholar 

  18. Bisazza A, Cantalupo C, Capocchiano M, Vallortigara G (2000) Population lateralisation and social behaviour: a study with 16 species of fish. Laterality 5:269–284

    CAS  PubMed  Google Scholar 

  19. Bitterman ME (1965) The evolution of intelligence. Sci Am 212:92–100

    CAS  PubMed  Google Scholar 

  20. Bitterman ME (1975) The comparative analysis of learning. Science 188:699–709

    CAS  PubMed  Google Scholar 

  21. Block N (1991) Evidence against epiphenomenonalism. Behav Brain Sci 14:670–672

    Google Scholar 

  22. Bonanni R, Natoli E, Cafazzo S, Valsecchi P (2011) Free-ranging dogs assess the quantity of opponents in intergroup conflicts. Anim Cogn 14:103–115

    PubMed  Google Scholar 

  23. Bouton ME, Peck CA (1989) Context effects of conditioning, extinction, and reinstatement in an appetitive conditioning preparation. Anim Learn Behav 17:188–198

    Google Scholar 

  24. Braithwaite VAB, Huntingford FA (2004) Fish and welfare: do fish have the capacity for pain perception and suffering? Anim Welf 13:s87–s92

    CAS  Google Scholar 

  25. Broglio C, Gómez A, Durán E, Salas C, Rodríguez F (2011) Brain and cognition in teleost fish. In: Brown C, Krause J, Laland K (eds) Fish cognition and behavior. Wiley, Oxford, pp 325–358

    Google Scholar 

  26. Broom DM (2001) Evolution of pain. R Soc Med Int Congr Symp Ser 246:17–25

    Google Scholar 

  27. Brown C (2001) Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Anim Cogn 4:109–113

    Google Scholar 

  28. Brown C (2005) Cerebral lateralisation; social constraints and coordinated antipredator responses. Behav Brain Sci 28:591–592

    Google Scholar 

  29. Brown C (2012) Tool use in fishes. Fish Fish 13:105–115

    Google Scholar 

  30. Brown C, Bibost A-L (2014a) Laterality is linked to personality in the black-lined rainbowfish, Melanotaenia nigrans. Behav Ecol Sociobiol 68:999–1005

  31. Brown C, Bibost L-A (2014b) Laterality influences cognitive performance in rainbowfish Melanotaenia duboulayi. Anim Cogn. doi:10.1007/s10071-014-0734-3

    Google Scholar 

  32. Brown C, Laland K (2002a) Social enhancement and social inhibition of foraging behaviour in hatchery-reared Atlantic salmon. J Fish Biol 61:987–998

    Google Scholar 

  33. Brown C, Laland KN (2002b) Social learning of a novel avoidance task in the guppy: conformity and social release. Anim Behav 64:41–47

    Google Scholar 

  34. Brown C, Laland K (2011) Social learning in fishes. In: Brown C, Krause J, Laland K (eds) Fish cognition and behavior. Wiley, Oxford, pp 240–257

    Google Scholar 

  35. Brown C, Warburton K (1999) Social mechanisms enhance escape responses in shoals of rainbowfish, Melanotaenia duboulayi. Environ Biol Fish 56:455–459

    Google Scholar 

  36. Brown C, Gardner C, Braithwaite VA (2004) Population variation in lateralised eye use in the poeciliid Brachyraphis episcopi. Proc R Soc Lond B 271:S455–S457

    Google Scholar 

  37. Brown C, Laland K, Krause J (2011a) Fish cognition and behavior. In: Brown C, Krause J, Laland K (eds) Fish cognition and behaviour. Wiley, Oxford, pp 1–9

    Google Scholar 

  38. Brown GE, Ferrari MCO, Chivers DP (2011b) Learning about danger: chemical alarm cues and threat-sensitive assessment of predation risk by fishes. In: Brown C, Krause J, Laland K (eds) Fish cognition and behavior. Wiley, Oxford, pp 59–80

    Google Scholar 

  39. Bshary R (2011) Machiavellian intelligence in fishes. In: Brown C, Krause J, Laland K (eds) Fish cognition and behavior. Wiley, Cambridge, pp 277–297

    Google Scholar 

  40. Bshary R, Wurth M (2001) Cleaner fish Labroides dimidiatus manipulate client reef fish by providing tactile stimulation. Proc R Soc Lond B 268:1495–1501

    CAS  Google Scholar 

  41. Bshary R, Wickler W, Fricke H (2002) Fish cognition: a primate’s eye view. Anim Cogn 5:1–13

    PubMed  Google Scholar 

  42. Bshary R, Hohner A, Ait-el-Djoudi K, Fricke H (2006) Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol 4:e431

    PubMed Central  PubMed  Google Scholar 

  43. Bshary R, Gingins S, Vail AL (2014) Social cognition in fish. Trends Cogn Sci. doi:10.1016/j.tics.2014.04.005

  44. Byrne R, Whiten A (1989) Machiavellian intelligence II: Extensions and evaluations. Cambridge University Press

  45. Carpenter A (1887) Monkeys opening oysters. Nature 36:53

    Google Scholar 

  46. Chandroo KP, Yue S, Moccia RD (2004) An evaluation of current perspectives on consciousness and pain in fishes. Fish Fish 5:281–295

    Google Scholar 

  47. Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23

    PubMed  Google Scholar 

  48. Chivers DP, Brown GE, Smith RJF (1995) Familiarity and shoal cohesion in fathead minnows (Pimephales promelas)—implications for antipredator behavior. Can J Zool 73:955–960

    Google Scholar 

  49. Collett TS, Graham P (2004) Animal navigation: path integration, visual landmarks and cognitive maps. Curr Biol 14:R475–R477

    CAS  PubMed  Google Scholar 

  50. Coussi-Korbel S (1994) Learning to outwit a competitor in mangabeys (Cercocebus torquatus torquatus). J Comp Psychol 108:164–171

    CAS  PubMed  Google Scholar 

  51. Damasio A (1999) The feeling of what happens. Heinemann, London

    Google Scholar 

  52. Dawkins MS (1998) Evolution and animal welfare. Q Rev Biol 73:305–328

    CAS  PubMed  Google Scholar 

  53. Dawkins MS (2001) Who needs consciousness? Anim Welf 10(Suppl 1):19–29

    Google Scholar 

  54. Demski LS (2013) The pallium and mind/behavior relationships in Teleost fishes. Brain Behav Evol 82:31–44

    PubMed  Google Scholar 

  55. Deutschlander ME, Greaves DK, Haimberger T, Hawryshyn CW (2001) Functional mapping of UV photosensitivity during metamorphic transitions in a salmonid fish, Oncorhynchus mykiss. J Exp Biol 204:2401–2413

    CAS  PubMed  Google Scholar 

  56. Dill LM (1977) Refraction and the spitting behavior of the archerfish (Toxotes chatareus). Behav Ecol Sociobiol 2:169–184

    Google Scholar 

  57. Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91

    PubMed  Google Scholar 

  58. Douglas R, Hawryshyn C (1990) Behavioural studies of fish vision: an analysis of visual capabilities. In: Douglas R, Djamgoz M (eds) The visual system of fish. Springer, Netherlands, pp 373–418

    Google Scholar 

  59. Dugatkin LA, Godin J-GJ (1992) Reversal of female mate choice by copying in the guppy Poecilia reticulata. Proc R Soc Lond B 249:179–184

    CAS  Google Scholar 

  60. Duncan IJH, Petherick JC (1991) The implications of cognitive processes for animal welfare. J Anim Sci 69:5017–5022

    CAS  PubMed  Google Scholar 

  61. Fagan JF, Singer LT (1983) Infant recognition memory as a measure of intelligence. Adv Infancy Res 2:31–78

    Google Scholar 

  62. Fernö A, Huse G, Jakobsen PJ, Kristiansen TS (2011) The role of fish learning skills in fisheries and aquaculture. In: Brown C, Krause J, Laland KN (eds) Fish cognition and behaviour. Blackwell, Oxford, pp 278–310

    Google Scholar 

  63. Fisher J, Hinde RA (1949) The opening of milk bottles by birds. Br Birds 42:347–358

    Google Scholar 

  64. Fricke H (1974) Öko-Ethologie des monogamen Anemonenfisches Amphiprion bicinctus. Z Tierpsychol 36:429–512

    CAS  PubMed  Google Scholar 

  65. Frommen JG, Luz C, Bakker TCM (2007) Kin discrimination in sticklebacks is mediated by social learning rather than innate recognition. Ethology 113:276–282

    Google Scholar 

  66. Frostman P, Sherman PT (2004) Behavioral response to familiar and unfamiliar neighbors in a territorial cichlid, Neolamprologus pulcher. Ichthyol Res 51:283–285

    Google Scholar 

  67. Fuss T, Belackmann H, Schleussel V (2014) The brain creates illusions not just for us: sharks (Chiloscyllium griseum) can “see the magic” as well. Front Neural Circuits 8:24

    PubMed Central  PubMed  Google Scholar 

  68. Gallup GG (1970) Chimpanzees: self recognition. Science 167:86–87

    Google Scholar 

  69. Gerlach G, Hodgins-Davis A, Avolio C, Schunter C (2008) Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc R Soc Lond B 275:2165–2170

    Google Scholar 

  70. Gomahr A, Palzenberger M, Kotrschal K (1992) Density and distribution of external taste buds in cyprinids. Environ Biol Fish 33:125–134

    Google Scholar 

  71. Gómez-Laplaza L, Gerlai R (2011a) Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Anim Cogn 14:1–9

    PubMed  Google Scholar 

  72. Gómez-Laplaza L, Gerlai R (2011b) Spontaneous discrimination of small quantities: shoaling preferences in angelfish (Pterophyllum scalare). Anim Cogn 14:565–574

    PubMed  Google Scholar 

  73. Gomez-Laplaza LM, Morgan E (2005) Time-place learning in the cichlid angelfish, Pterophyllum scalare. Behav Process 70:177–181

    Google Scholar 

  74. Griffiths SW, Magurran AE (1997) Familiarity in schooling fish; how long does it take to acquire. Anim Behav 53:945–949

    Google Scholar 

  75. Grutter AS, Rumney JG, Sinclair-Taylor T, Waldie P, Franklin CE (2011) Fish mucous cocoons: the ‘mosquito nets’ of the sea. Biol Lett 7:292–294

    PubMed Central  PubMed  Google Scholar 

  76. Hansell M, Ruxton GD (2008) Setting tool use within the context of animal construction behaviour. Trends Ecol Evol 23:73–78

    PubMed  Google Scholar 

  77. Hara TJ (1994) Olfaction and gustation in fish: an overview. Acta Physiol Scand 152:207–217

    CAS  PubMed  Google Scholar 

  78. Hawkins A, Amorim MC (2000) Spawning sounds of the male haddock, Melanogrammus aeglefinus. Environ Biol Fish 59:29–41

    Google Scholar 

  79. Helfman GS, Schultz ET (1984) Social transmission of behavioural traditions in a coral reef fish. Anim Behav 32:379–384

    Google Scholar 

  80. Hermer L, Spelke ES (1994) A geometric process for spatial reorientation in young children. Nature 370:57–59

    CAS  PubMed  Google Scholar 

  81. Heyes CM (1993) Imitation, culture and cognition. Anim Behav 46:999–1010

    Google Scholar 

  82. Heyes CM (1994) Social learning in animals: categories and mechanisms. Biol Rev 69:207–231

    CAS  PubMed  Google Scholar 

  83. Hogue ME, Beaugrand JP, Laguë PC (1996) Coherent use of information by hens observing their former dominant defeating or being defeated by a stranger. Behav Process 38:241–252

    CAS  Google Scholar 

  84. Hunt GR (1996) Manufacture and use of hook-tools by New Caledonian crows. Nature 379:249–251

    CAS  Google Scholar 

  85. Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandøe P, Turnbull JF (2006) Current issues in fish welfare. J Fish Biol 68:332–372

    Google Scholar 

  86. Irving E, Brown C (2013) Examining the link between personality and laterality in a feral guppy Poecilia reticulata population. J Fish Biol 83:311–325

    CAS  PubMed  Google Scholar 

  87. Iwama GK (2007) The welfare of fish. Dis Aquat Org 75:155–158

    PubMed  Google Scholar 

  88. Johnston CE, Johnson DL (2000) Sound production in Pimephales notatus (Rafinesque) (Cyprinidae). Copeia 2000:567–571

    Google Scholar 

  89. Jones AM, Brown C, Gardner S (2011) Tool use in the tuskfish Choerodon schoenleinii? Coral Reefs 30:865

    Google Scholar 

  90. Kamermans M, Hawryshyn CW (2011) Teleost polarisation vision: how it might work and what it might be good for. Philos Trans R Soc Lond B 366:742–756

    Google Scholar 

  91. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  92. Kelley JL, Brown C (2011) Predation risk and decision making in poeciliid prey. In: Evans JP, Pilastro A, Schlupp I (eds) Ecology and evolution of poeciliid fishes. University of Chicago Press, pp 174–184

  93. Kelley JL, Magurran AE (2003) Learned predator recognition and anti-predator responses in fishes. Fish Fish 4:216–226

    Google Scholar 

  94. Kirkwood KK, Hubrecht R (2001) Animal consciousness, cognition and welfare. Anim Welf 10(Supplement 1):5–17

    Google Scholar 

  95. Kitchen DM (2004) Alpha male black howler monkey responses to loud calls: effect of numeric odds, male companion behaviour and reproductive investment. Anim Behav 67:125–139

    Google Scholar 

  96. Klausewitz W (1960) Ein bemerkenswerter Zähmungsversuch an freilebenden Fischen. Natur Volk 90:91–96

    Google Scholar 

  97. Kydd E, Brown C (2009) Loss of shoaling preference for familiar individuals in captive-reared crimson spotted rainbowfish Melanotaenia duboulayi. J Fish Biol 74:2187–2195

    CAS  PubMed  Google Scholar 

  98. Lachlan RF, Crooks L, Laland KN (1998) Who follows whom? Shoaling preferences and social learning of foraging information in guppies. Anim Behav 56:181–190

    PubMed  Google Scholar 

  99. Laland K, Williams K (1997) Shoaling generates social learning of foraging information in guppies. Anim Behav 53:1161–1169

    PubMed  Google Scholar 

  100. Lefebvre L, Nicolakakis N, Boire D (2002) Tools and brains in birds. Behavior 139:939–973

    Google Scholar 

  101. Lund V, Mejdell CM, Rocklingsberg H, Anthony R, Hastein T (2007) Expanding the moral circle: farmed fish as objects of moral concern. Dis Aquat Org 75:109–118

    PubMed  Google Scholar 

  102. Macphail EM (1998) The evolution of consciousness. Oxford University Press, Oxford

    Google Scholar 

  103. Magurran AE, Seghers BH, Shaw PW, Carvalho GR (1994) Schooling preferences for familiar fish in the guppy, Poecilia reticulata. J Fish Biol 45:401–406

    Google Scholar 

  104. McComb K, Packer C, Pusey A (1994) Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim Behav 47:379–387

    Google Scholar 

  105. Mcphail EM (1982) Brian and intelligence in vertebrates. Oxford University Press, Oxford

    Google Scholar 

  106. Means LW, Ginn SR, Arolfo MP, Pence JD (2000) Breakfast in the nook and dinner in the dining room: time-of-day discrimination in rats. Behav Process 49:21–33

    Google Scholar 

  107. Miklósi Á, Topál J, Csányi V (2004) Comparative social cognition: what can dogs teach us? Anim Behav 67:995–1004

    Google Scholar 

  108. Milinski M (1990) On cooperation in sticklebacks. Anim Behav 40:1190–1191

    Google Scholar 

  109. Milinski M (2003) The function of mate choice in sticklebacks: optimizing MHC genetics. J Fish Biol 63:1–16

    Google Scholar 

  110. Mouritsen H, Ritz T (2005) Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 15:406–414

    CAS  PubMed  Google Scholar 

  111. Nelson A, Alemadi S, Wisenden B (2013) Learned recognition of novel predator odour by convict cichlid embryos. Behav Ecol Sociobiol 67:1269–1273

    Google Scholar 

  112. Neumeyer C (1982) Wavelength discrimination in the goldfish. J Comp Phys A 171:639–649

    Google Scholar 

  113. Nicol CJ (1996) Farm animal cognition. Anim Sci 62:375–391

    Google Scholar 

  114. Nieder A, Dehaene S (2009) Representation of number in the brain. Ann Rev Neurosci 32:185–208

    CAS  PubMed  Google Scholar 

  115. Odling-Smee L, Braithwaite VA (2003) The role of learning in fish orientation. Fish Fish 4:235–246

    Google Scholar 

  116. Oliveira RF, McGregor PK, Latruffe C (1998) Know thine enemy: fighting fish gather information from observing conspecific interactions. Proc R Soc Lond B 265:1045–1049

    Google Scholar 

  117. Östlund-Nilsson S, Holmlund M (2003) The artistic three-spined stickleback (Gasterosteous aculeatus). Behav Ecol Sociobiol 53:214–220

    Google Scholar 

  118. Oulton LJ, Haviland V, Brown C (2013) Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos. PLoS One 8(10):e76061

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Panksepp J (2005) Affective consciousness: core emotional feelings in animals and humans. Conscious Cogn 14:30–80

    PubMed  Google Scholar 

  120. Parker ST, Mitchell RW, Boccia ML (1994) Self-awareness in animals and humans: developmental perspectives. Cambridge University Press, New York

    Google Scholar 

  121. Pavlov IP (1927) Conditioned reflexes. Oxford University Press, Oxford

    Google Scholar 

  122. Popper AN, Lu Z (2000) Structure–function relationships in fish otolith organs. Fish Res 46:15–25

    Google Scholar 

  123. Proops L, McComb K (2012) Cross-modal individual recognition in domestic horses (Equus caballus) extends to familiar humans. Proc R Soc Lond B 279:3131–3138

    Google Scholar 

  124. Reader S (2003) Innovation and social learning: individual variation and brain evolution. Anim Biol 53:147–158

    Google Scholar 

  125. Reader SM, Laland KN (2002) Social intelligence, innovation and enhanced brain size in primates. Proc Natl Acad Sci 99:4436–4441

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Reebs S (1996) Time–place learning in golden shiners (Pisces: Cyprinidae). Behav Process 36:253–262

    CAS  Google Scholar 

  127. Reebs S (1999) Time-place learning based on food but not on predation risk in a fish, the inanga (Galaxias maculatus). Ethology 105:361–371

    Google Scholar 

  128. Reilly SC, Quinn JP, Cossins AR, Sneddon LU (2008) Behavioural analysis of a nociceptive event in fish: comparisons between three species demonstrate specific responses. Appl Anim Behav Sci 114:248–259

    Google Scholar 

  129. Reiss D, Marino L (2001) Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. Proc Natl Acad Sci 98:5937–5942

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Rink E, Wullimann MF (2004) Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res 1011:206–220

    CAS  PubMed  Google Scholar 

  131. Rogers LJ (2002) Lateralization in vertebrates: its early evolution, general pattern, and development. Adv Study Behav 31:107–161

    Google Scholar 

  132. Rollin BE (1989) The unheeded cry: animal consciousness animal pain and science. Oxford University Press, Oxford, UK

    Google Scholar 

  133. Romanes GJ (1882) Animal intelligence. Appleton and Co., New York

    Google Scholar 

  134. Rose JD (2002) The neurobehavioral nature of fishes and the question of awareness and pain. Rev Fish Sci 10:1–38

    Google Scholar 

  135. Rose JD, Arlinghaus R, Cooke SJ, Diggles BK, Sawynok W, Stevens ED, Wynne CDL (2014) Can fish really feel pain? Fish Fish 15:97–133

    Google Scholar 

  136. Rosenthal G (1999) Using video playback to study sexual communication. Environ Biol Fish 56:307–316

    Google Scholar 

  137. Rosenthal GG, Evans CS (1998) Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc Natl Acad Sci 95:4431–4436

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–257

    PubMed  Google Scholar 

  139. Rugani R, Fontanari L, Simoni E, Regolin L, Vallortigara G (2009) Arithmetic in newborn chicks. Proc R Soc Lond B 276:2451–2460

    Google Scholar 

  140. Sacchetti B, Scelfo B, Strata P (2009) Cerebellum and emotional behaviour. Neuroscience 162:756–762

    CAS  PubMed  Google Scholar 

  141. Seed A, Byrne R (2010) Animal tool-use. Curr Biol 20:R1032–R1039

    CAS  PubMed  Google Scholar 

  142. Shettleworth, SJ (2010) Cognition, evolution, and behaviour, 2nd edn. Kindle Edition. Oxford University Press, Oxford

  143. Siebeck UE, Parker AN, Prenger D, Mathger LM, Wallis G (2010) Covert face recognition in a species of reef fish. Curr Biol 20:407–410

    CAS  PubMed  Google Scholar 

  144. Silk JB (1999) Male bonnet macaques use information about third-party rank relationships to recruit allies. Anim Behav 58:45–51

    PubMed  Google Scholar 

  145. Simpson SD, Meekan MG, McCauley RD, Jeffs A (2004) Attraction of settlement-stage coral reed fishes to reef noise. Mar Ecol Prog Ser 276:263–268

    Google Scholar 

  146. Skinner BF (1938) The behavior of organisms: an experimental analysis. Appleton-Century-Crofts, New York

    Google Scholar 

  147. Sneddon LU (2003) The evidence for pain in fish: the use of morphine as an analgesic. Appl Anim Behav Sci 83:153–162

    Google Scholar 

  148. Sneddon LU (2011) Pain perception in fish: evidence and implications for the use of fish. J Conscious Stud 18:209–229

    Google Scholar 

  149. Sneddon LU (2013) Cognition and welfare. In: Brown C, Krause J, Laland K (eds) Fish cognition and behaviour. Wiley, Cambridge, pp 405–434

    Google Scholar 

  150. Sneddon LU, Braithwaite VA, Gentle MJ (2003) Novel object test: examining nociception and fear in the rainbow trout. J Pain 4:431–440

    PubMed  Google Scholar 

  151. Solomon RL, Wynne LC (1954) Traumatic avoidance learning: the principles of anxiety conservation and partial irreversibility. Psychol Rev 61:353–385

    CAS  PubMed  Google Scholar 

  152. Sovrano VA (2004) Visual lateralization in response to familiar and unfamiliar stimuli in fish. Behav Brain Res 152:385–391

    PubMed  Google Scholar 

  153. Sovrano VA, Bisazza A (2008) Recognition of partly occluded objects by fish. Anim Cogn 11:161–166

    PubMed  Google Scholar 

  154. Sovrano VA, Bisazza A (2009) Perception of subjective contours in fish. Perception 38:579–590

    PubMed  Google Scholar 

  155. Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition 85:B51–B59

    PubMed  Google Scholar 

  156. Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish (Xenotoca eiseni) views it: conjoining geometric and nongeometric information for spatial reorientation. J Exp Psychol Anim Behav Process 29:199–210

    PubMed  Google Scholar 

  157. Stevens JR, Cushman FA, Hauser MD (2005) Evolving the psychological mechanisms for cooperation. Ann Rev Ecol Evol Syst 36:499–518

    Google Scholar 

  158. Sulkowski GM, Hauser MD (2001) Can rhesus monkeys spontaneously subtract? Cognition 79:239–262

    CAS  PubMed  Google Scholar 

  159. Taborsky M (1984) Broodcare helpers in the cichlid fish, Lamprologus brichardi: their costs and benefits. Anim Behav 32:1236–1252

    Google Scholar 

  160. Tebbich S, Bshary R, Grutter A (2002) Cleaner fish Labroides dimidiatus recognise familiar clients. Anim Cogn 5:139–145

    CAS  PubMed  Google Scholar 

  161. Thornhill R, Gangestad SW, Miller R, Scheyd G, McCollough JK, Franklin M (2003) Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women. Behav Ecol 14:668–678

    Google Scholar 

  162. Thorpe WH (1956) Learning and instinct in animals. Methuen, London

    Google Scholar 

  163. Thünken T, Waltschyk N, Bakker T, Kullmann H (2009) Olfactory self-recognition in a cichlid fish. Anim Cogn 12:717–724

    PubMed  Google Scholar 

  164. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    CAS  PubMed  Google Scholar 

  165. Tononi G, Edelman G (1998) Consciousness and complexity. Science 282:1846–1851

    CAS  PubMed  Google Scholar 

  166. Trick LM, Pylyshyn ZW (1994) Why are small and large numbers enumerated differently: a limited-capacity preattentive stage in vision. Psychol Rev 101:80–102

    CAS  PubMed  Google Scholar 

  167. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633

    PubMed  Google Scholar 

  168. Vallortigara G, Chiandetti C, Sovrano VA (2011) Brain symmetry (animal). Wiley Interdiscip Rev Cogn Sci 2:146–157

    Google Scholar 

  169. van Lawick-Goodall J (1970) Tool-using primates and other vertebrates. In: Lehrman D, Hinde R, Shaw E (eds) Advances in the study of behavior, vol 3. Academic Press, New York, pp 195–249

    Google Scholar 

  170. Vargas JP, López JC, Salas C, Thinus-Blanc C (2004) Encoding of geometric and featural spatial information by goldfish (Carassius auratus). J Comp Psychol 118(2):206–216

  171. von Frisch K (1913) Weitere Untersuchungen über den Farbensinn der Fische. Zool Jahrb Abt allg Zool Physiol Tiere 34:43–68

    Google Scholar 

  172. von Frisch K (1941) Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z vergl Physiol 29:46–145

    Google Scholar 

  173. Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC, Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376

    CAS  PubMed  Google Scholar 

  174. Whalen J, Gallistel CR, Gelman R (1999) Nonverbal counting in humans: the psychophysics of number representation. Psychol Sci 10:130–137

    Google Scholar 

  175. White G, Brown C (2013) Site fidelity and homing behaviour in intertidal fishes. Mar Biol 160:1365–1372

    Google Scholar 

  176. Whiten A, Byrne RW (1997) Machiavellian intelligence II: extensions and evaluations. Cambridge University Press, Cambridge

    Google Scholar 

  177. Wynn K (1992) Addition and subtraction by human infants. Nature 358:749–750

    CAS  PubMed  Google Scholar 

  178. Wyzisk K, Neumeyer C (2007) Perception of illusory surfaces and contours in goldfish. Vis Neurosci 24:291–298

    PubMed  Google Scholar 

  179. Yamamoto S, Humle T, Tanaka M (2013) Basis for cumulative cultural evolution in chimpanzees: social learning of a more efficient tool-use technique. PLoS One 8(1):e55768

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Culum Brown.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, C. Fish intelligence, sentience and ethics. Anim Cogn 18, 1–17 (2015). https://doi.org/10.1007/s10071-014-0761-0

Download citation

Keywords

  • Fish cognition
  • Sentience
  • Welfare
  • Pain
  • Intelligence
  • Ethics