Advertisement

Animal Cognition

, Volume 17, Issue 6, pp 1245–1259 | Cite as

Visual laterality in belugas (Delphinapterus leucas) and Pacific white-sided dolphins (Lagenorhynchus obliquidens) when viewing familiar and unfamiliar humans

  • Deirdre B. YeaterEmail author
  • Heather M. Hill
  • Natalie Baus
  • Heather Farnell
  • Stan A. KuczajII
Original Paper

Abstract

Lateralization of cognitive processes and motor functions has been demonstrated in a number of species, including humans, elephants, and cetaceans. For example, bottlenose dolphins (Tursiops truncatus) have exhibited preferential eye use during a variety of cognitive tasks. The present study investigated the possibility of visual lateralization in 12 belugas (Delphinapterus leucas) and six Pacific white-sided dolphins (Lagenorhynchus obliquidens) located at two separate marine mammal facilities. During free swim periods, the belugas and Pacific white-sided dolphins were presented a familiar human, an unfamiliar human, or no human during 10–15 min sessions. Session videos were coded for gaze duration, eye presentation at approach, and eye preference while viewing each stimulus. Although we did not find any clear group level lateralization, we found individual left eye lateralized preferences related to social stimuli for most belugas and some Pacific white-sided dolphins. Differences in gaze durations were also observed. The majority of individual belugas had longer gaze durations for unfamiliar rather than familiar stimuli. These results suggest that lateralization occurs during visual processing of human stimuli in belugas and Pacific white-sided dolphins and that these species can distinguish between familiar and unfamiliar humans.

Keywords

Delphinapterus leucas Beluga Pacific white-sided dolphins Lagenorhynchus obliquidens Perceptual laterality Human-animal familiarity 

Notes

Acknowledgments

The authors thank undergraduate research assistants Katherine Anninos and Katherine Mala from Sacred Heart University and Melissa Garcia from St. Mary’s University for their assistance conducting observations and coding the videos. We are grateful to Mystic Aquarium, a division of Sea Research Foundation, and SeaWorld San Antonio for access to the study animals. Special thanks go to Kristine Magao, Gayle Sirpinski, Shirlee Crandall, and Steve Lacy for logistical support. In addition, we would like to thank all of the animal care staff at both facilities for participating in the study as the familiar stimuli. Finally, we thank Judy St. Leger, Tracy Romano, and several other anonymous reviewers for helpful comments on earlier versions of this manuscript. This constitutes scientific contribution #220 from the Sea Research Foundation.

Supplementary material

10071_2014_756_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Berta A, Sumich JL, Kovacs KM (2006) Marine mammals: evol biol. Elsevier, Burlington, MAGoogle Scholar
  2. Bisazza A, Rogers L, Vallortigara G (1998) The origins of cerebral asymmetry: a review of evidence of behavioral and brain lateralization in Fishes, reptiles, and amphibians. Neurosci Biobehav R 22:411–426. doi: 10.1016/S0149(97)00050-X
  3. Blois-Heulin C, Crevel M, Boye M, Lemasson A (2012) Visual laterality in dolphins: importance of the familiarity of stimuli. BMC Neurosci 13:9. doi: 10.1186/1471-2202-13-9
  4. Brown C, Western J, Braithwaite VA (2007) The influence of early experience on, and inheritance of, cerebral lateralization. Anim Behav 74:231–238. doi:org/ 10.1016/j.anbehav.2006.08.014
  5. Chapelain A, Blois-Heulin C (2009) Lateralization for visual processes: eye preference in Campbell’s monkeys (Ceropithecus c. campbelli). Anim Cogn 12:11–19. doi: 10.1007/s10071-008-0164-1
  6. de Latude M, Demange M, Bec P, Blois-Heulin C (2009) Visual laterality responses to different emotive stimuli by red-capped mangabeys, Cercocebus torquatus torquatus. Anim Cogn 12:31–42. doi: 10.1007/s10071-008-0166-z
  7. Delfour F, Marten K (2006) Lateralized visual behavior in bottlenose dolphins (Tursiops truncatus) performing audio-visual tasks: the right visual field advantage. Behav Process 71:41–50. doi: 10.1016/j.bepproc.2005.09.005
  8. Field A (2009) Discovering statistics using SPSS, 3rd edn. Sage, Los Angeles, CAGoogle Scholar
  9. Franklin WE, Lima SL (2001) Laterality in avian vigilance: do sparrows have a favourite eye? Anim Behav 62:879–885. doi: 10.1006/anbe.2001.1826
  10. Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: a game theoretical analysis of population structure. Proc R Soc Lond B 271:853–857. doi: 10.1098/rspb.2003.2669
  11. Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1302581110 PubMedPubMedCentralGoogle Scholar
  12. Highfill L, Kuczaj S (2007) Do bottlenose dolphins (Tursiops truncatus) have distinct and stable personalities? Aquat Mamm 33:380–389. doi: 10.1578/AM.33.3.2007.380
  13. Highfill L, Kuczaj S (2010) How studies of wild and captive dolphins contribute to our understanding of individual differences and personality. Int J Comp Psychol 23:269–277Google Scholar
  14. Hill HM, Greer T, Solangi M, Kuczaj SA II (2007) Evidence for maternal styles in captive bottlenose dolphins. Int J Comp Psychol 20:34–53Google Scholar
  15. Karenina K, Giljov A, Baranov V, Osipova L, Krasnova V, Malashichev Y (2010) Visual laterality of mother-calf interactions in wild whales. PLOS One 5:11Google Scholar
  16. Karenina K, Giljov A, Glazov D, Malashichev Y (2013a) Social laterality in wild beluga whale infants: comparisons between locations, escort conditions, and ages. Behav Ecol Sociobiol 67:1195–1204. doi: 10.1007/s00265-013-1545-2
  17. Karenina K, Giljov A, Ivkovich T, Burdin A, Mallashichev Y (2013b) Lateralization of spatial relationships between wild mother and infant orcas, Orcinus orca. Anim Behav 86:1225–1231CrossRefGoogle Scholar
  18. Kilian A, von Fersen L, Güntürkün O (2000) Lateralization of visuospatial processing in the bottlenose dolphin (Tursiops truncatus). Behav Brain Res 116:211–215. doi: 10.1016/S0166-4328(00)00273-4
  19. Kilian A, von Fersen L, Güntürkün O (2005) Left hemispheric advantage for numerical abilities in the bottlenose dolphin. Behav Process 68:179–184. doi: 10.1016/j.beproc.2004.11.003
  20. Kuczaj SA, Walker R (2006) Problem solving in dolphins. In: Zentall T, Wasserman E (eds) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, New York, pp 580–601Google Scholar
  21. Kuczaj SA, Makecha R, Trone M, Paulos R, Ramos J (2006) The role of peers in cultural transmission and cultural innovation: evidence from dolphins calves. Int J Comp Psychol 19:223–240Google Scholar
  22. Kuczaj SA, Yeater D, Highfill L (2012) How selective is social learning in dolphins? Int J Comp Psychol 25:221–236Google Scholar
  23. Magat M, Brown C (2009) Laterality enhances cognition in Australian parrots. Proc R Soc Lond B Biol 276:4155–4162. doi: 10.1098/rspb.2009.1397
  24. Mass A, Supin A (2002) Visual field organization and retinal resolution of the beluga, Delphinapterus leucas (Pallas). Aquat Mamm 28:241–250. doi: 10.1002/ar.20529
  25. Mazzatenta A, Caleo M, Baldaccini N, Maffei L (2001) A comparative morphometric analysis of the optic nerve in two cetacean species, the striped dolphin (Stenella coeruleoalba) and fin whale (Balaenoptera physalus). Visual Neurosci 18:319–325CrossRefGoogle Scholar
  26. Pack AA, Herman LM (1995) Sensory integration in the bottlenosed dolphin: Immediate recognition of complex shapes across the senses of echolocation and vision. J Acoust Soc Am 98:722–733. doi: 10.1121/1.413566
  27. Ridgway SH (1986) Physiological observations on the dolphin brain.  In: Schusterman RJ, Thomas JA, Wood FG (eds) Dolphin cognition and behavior: a comparative approach. Lawrence Erlbaum, Hillsdale, NJ, pp 31–59Google Scholar
  28. Rogers L (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73:236–253. doi: 10.1006/brln.2000.2305
  29. Rogers LI, Andrew RJ (2002) Comparative vertebrate lateralization. Cambridge University Press, New YorkCrossRefGoogle Scholar
  30. Rogers LI, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. Biol Lett 271:S420–S422. doi: 10.1098/rsbl.2004/0200
  31. Rogers LI, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behavior of brain asymmetries. Cambridge University Press, New YorkCrossRefGoogle Scholar
  32. Rosa Salva O, Regolin L, Mascalzoni E, Vallortigara G (2012) Cerebral and behavioral asymmetries in animal social recognition. Comp Cogn Behav Rev 7:110–138. doi: 10.3819/ccbr2012.70006
  33. Sakai M, Hishii T, Takeda S, Kohshima S (2006) Laterality of flipper rubbing behavior in wild bottlenose dolphins (Tursiops aduncus): caused by asymmetry of eye use? Behav Brain Res 170:204–210. doi: 10.1016/j.bbr.2006.02.018
  34. Siniscalchi M, Dimatteo S, Pepe A, Sasso R, Quaranta A (2012) Visual lateralization in wild striped dolphins (Stenella coeruleoalba) in response to stimuli with different degrees of familiarity. PLoS ONE 7:1CrossRefGoogle Scholar
  35. Tarpley RJ, Gelderd JB, Bauserman S, Ridgway SH (1994) Dolphin peripheral visual pathway in chronic unilateral ocular atrophy: complete decussation apparent. J Morphol 222:91–102. doi: 10.1002/jmor.10522201009
  36. Thieltges H, Lemasson A, Kuczaj S, Boye M, Blois-Heulin C (2011) Visual laterality in dolphins when looking at (un)familiar humans. Anim Cogn 14:303–308. doi: 10.1007/s10071-010-0354-5
  37. Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through animals’ left and right perceptual worlds. Brain Lang 73:189–219. doi: 10.1006/brln.2000.2303
  38. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589. doi: 10.1017/S0140525x05000105 PubMedGoogle Scholar
  39. Van Belle G, Busigny T, Lefevre P, Joubert S, Felician O, Gentile F, Rossion B (2011) Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: converging evidence from gaze-contigency. Neuropsychologia 49:3145–3150. doi: 10.1016/j.neuropsychologia.2011.07.010
  40. von Fersen L, Schall U, Güntürkün O (2000) Visual lateralization of pattern discrimination in the bottlenose dolphin (Tursiops truncatus). Behav Brain Res 107:177–181. doi: 10.1016/S0166-4328(99)00142-4
  41. Waples KA, Gales NJ (2002). Evaluating and minimizing social stress in the care of captive bottlenose dolphins (Tursiops aduncus). Zoo Biol 21:5–26. doi: 10.1002/zoo.10004
  42. Yaman S, von Fersen L, Dehnhardt G, Güntürkün O (2003) Visual lateralization in the bottlenose dolphin (Tursiops truncatus): evidence for a population asymmetry? Behav Brain Res 142:109–114. Doi: 10.1016/S0166-4328(02)00385-6

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Deirdre B. Yeater
    • 1
    Email author
  • Heather M. Hill
    • 2
  • Natalie Baus
    • 2
  • Heather Farnell
    • 1
  • Stan A. KuczajII
    • 3
  1. 1.Department of PsychologySacred Heart UniversityFairfieldUSA
  2. 2.Department of PsychologySt. Mary’s UniversitySan AntonioUSA
  3. 3.Department of PsychologyUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations