Skip to main content
Log in

Appetitive and aversive olfactory learning induce similar generalization rates in the honey bee

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Appetitive and aversive learning drive an animal toward or away from stimuli predicting reinforcement, respectively. The specificity of these memories may vary due to differences in cost–benefit relationships associated with appetitive and aversive contexts. As a consequence, generalization performances may differ after appetitive and aversive training. Here, we determined whether honey bees show different rates of olfactory generalization following appetitive olfactory conditioning of the proboscis extension response, or aversive olfactory conditioning of the sting extension response. In both cases, we performed differential conditioning, which improves discrimination learning between a reinforced odor (CS+) and a non-reinforced odor (CS−) and evaluated generalization to two novel odors whose similarity to the CS+ and the CS− was different. We show, given the same level of discriminatory performance, that rates of generalization are similar between the two conditioning protocols and discuss the possible causes for this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avarguès-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443

    Article  PubMed  Google Scholar 

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59(4):390–412

    Article  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107–119

    Article  CAS  PubMed  Google Scholar 

  • Bos N, Dreier S, Jørgensen CG, Nielsen J, Guerrieri FJ, d’Ettorre P (2011) Learning and perceptual similarity among cuticular hydrocarbons in ants. J Insect Physio 58(1):138–148

    Article  Google Scholar 

  • Bos N, d’Ettorre P, Guerrieri FJ (2013) Chemical structure of odorants and perceptual similarity in ants. J Exp Biol 216:3314–3320

    Google Scholar 

  • Breed MD, Guzman-Novoa E, Hunt GJ (2004) Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu Rev Entomol 49:271–298

    Article  CAS  PubMed  Google Scholar 

  • Carcaud J, Roussel E, Giurfa M, Sandoz JC (2009) Odour aversion after olfactory conditioning of the sting extension reflex in honeybees. J Exp Biol 212(Pt 5):620–626

    Article  PubMed  Google Scholar 

  • Coureaud G, Hamdani Y, Schaal B, Thomas-Danguin T (2009) Elemental and configural processing of odour mixtures in the newborn rabbit. J Exp Biol 212:2525–2531

    Article  PubMed  Google Scholar 

  • Daly KC, Chandra S, Durtschi ML, Smith B (2001) The generalization of an olfactory-based conditioned response reveals unique but overlapping odour representations in the moth Manduca sexta. J Exp Biol 204:3085–3095

    CAS  PubMed  Google Scholar 

  • Deisig N, Lachnit H, Giurfa M (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Mem 9(3):112–121

    Article  PubMed  Google Scholar 

  • Deisig N, Giurfa M, Lachnit H, Sandoz JC (2006) Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur J Neurosci 24(4):1161–1174

    Article  PubMed  Google Scholar 

  • Deisig N, Giurfa M, Sandoz JC (2010) Antennal lobe processing increases separability of odor mixture representations in the honeybee. J Neurophysiol 103(4):2185–2194

    Article  PubMed  Google Scholar 

  • Dyer AG, Chittka L (2004) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91(5):224–227

    Article  CAS  PubMed  Google Scholar 

  • Field A (2005) Discovering statistics using SPSS. Sage Publications, London

    Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage Publications, London

    Google Scholar 

  • Ghirlanda S, Enquist M (2003) A century of generalization. Anim Behav 66:15–36

    Article  Google Scholar 

  • Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91(5):228–231

    Article  CAS  PubMed  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193(8):801–824

    Article  Google Scholar 

  • Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: 50 years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19(2):54–66

    Article  PubMed  Google Scholar 

  • Giurfa M, Fabre E, Flaven-Pouchon J, Groll H, Oberwallner B, Vergoz V, Roussel E, Sandoz JC (2009) Olfactory conditioning of the sting extension reflex in honeybees: memory dependence on trial number, interstimulus interval, intertrial interval, and protein synthesis. Learn Mem 16(12):761–765

    Article  PubMed  Google Scholar 

  • Guerrieri FJ, Schubert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3(4):e60

    Article  PubMed Central  PubMed  Google Scholar 

  • Guerrieri FJ, Nehring V, Jørgensen C, Nielsen J, Galizia G, d’Ettorre P (2009) Ants recognize foes and not friends. Proc R Soc Lond B Biol Sci 276(1666):2461–2468

    Article  CAS  Google Scholar 

  • Guibé M, Poirel N, Houdé O, Dickel L (2012) Food imprinting and visual generalization in embryos and newly hatched cuttlefish, Sepia officinalis. Anim Behav 84(1):213–217

    Article  Google Scholar 

  • Hearst E (1960) Simultaneous generalization gradients for appetitive and aversive behavior. Science 132(3441):1769–1770

    Article  CAS  PubMed  Google Scholar 

  • Hearst E (1962) Concurrent generalization gradients for food-controlled and shock-controlled behavior. J Exp Anal Behav 5(1):19–31

    Article  CAS  PubMed  Google Scholar 

  • Joerges J, Kuettner A, Galizia G, Menzel R (1997) Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387:285–288

    Article  CAS  Google Scholar 

  • Lashley KS, Wade M (1946) The Pavlovian theory of generalization. Psychol Rev 53:72–87

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh NJ (1983) Conditioning and associative learning. Oxford psychology series, vol 3. Oxford University Press, New York

    Google Scholar 

  • Maechler M, Bates D (2010) lme4: linear mixed-effects models using S4 classes. R package version 099937–099935

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, London

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roussel E, Carcaud J, Sandoz JC, Giurfa M (2009) Reappraising social insect behavior through aversive responsiveness and learning. PLoS ONE 4:e4197

    Article  PubMed Central  PubMed  Google Scholar 

  • Rudy JW (2008) The neurobiology of learning and memory. Sinauer Ass, Sunderland

    Google Scholar 

  • Sachse S, Rappert A, Galizia CG (1999) The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. Eur J Neurosci 11(11):3970–3982

    Article  CAS  PubMed  Google Scholar 

  • Schull J (1979) A conditioned opponent theory of Pavlovian conditioning and habituation. Psychol Learn Motiv 13:57–90

    Article  Google Scholar 

  • Shepard RN (1987) Toward a universal law of generalization for psychological science. Science 237:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Skinner BF (1938) The behavior of organisms: an experimental analysis. The century psychology series. D. Appleton-Century Company, New York

    Google Scholar 

  • Spence KW (1937) The differential response in animals to stimuli varying within a single dimension. Psychol Rev 44:430–444

    Article  Google Scholar 

  • Staddon JE (1983) Adaptive behavior and learning. Cambridge University Press, New York, pp 121–161

    Google Scholar 

  • Takeda K (1961) Classical conditioned response in the honey bee. J Insect Physiol 6:168–179

    Article  CAS  Google Scholar 

  • Vareschi E (1971) Duftunterscheidung bei der Honigbiene—Einzelzell-Ableitungen und Verhaltensreaktionen. Z vergl Physiol 75:143–173

    Google Scholar 

  • Vergoz V, Roussel E, Sandoz JC, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS ONE 2(3):e288

    Article  PubMed Central  PubMed  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77(4):1043–1060

    Article  Google Scholar 

Download references

Acknowledgments

M.G. acknowledges the support of the French Research Council, the University Paul Sabatier and of the Institut Universitaire de France. NB and PdE were supported by a grant of the Faculty of Science, University of Copenhagen and by the Danish National Research Foundation (Centre for Social Evolution). Thanks to the Centre of Excellence in Biological Interactions for allowing allocation of working time and salary (provided by project grant 1251337) on the writing of our manuscript. We thank the three anonymous referees for their help in improving the manuscript. The authors declare that they have no conflict of interest. Treatment of the experimental animals complied with European laws on animal care and experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Bos.

Additional information

Martin Giurfa and Patrizia d’Ettorre shared senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10071_2013_671_MOESM1_ESM.jpg

Supplementary material 1 Acquisition curves and test for both appetitive (PER, n = 75) and aversive (SER, n = 99) differential conditioning paradigms. As there was no significant difference in acquisition depending on whether A or B was CS+, data are pooled here. For the test, only the response to CS+ and CS− are shown (JPEG 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bos, N., Roussel, E., Giurfa, M. et al. Appetitive and aversive olfactory learning induce similar generalization rates in the honey bee. Anim Cogn 17, 399–406 (2014). https://doi.org/10.1007/s10071-013-0671-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-013-0671-6

Keywords

Navigation