Skip to main content

Visual discrimination of rotated 3D objects in Malawi cichlids (Pseudotropheus sp.): a first indication for form constancy in fishes

Abstract

Fish move in a three-dimensional environment in which it is important to discriminate between stimuli varying in colour, size, and shape. It is also advantageous to be able to recognize the same structures or individuals when presented from different angles, such as back to front or front to side. This study assessed visual discrimination abilities of rotated three-dimensional objects in eight individuals of Pseudotropheus sp. using various plastic animal models. All models were displayed in two choice experiments. After successful training, fish were presented in a range of transfer tests with objects rotated in the same plane and in space by 45° and 90° to the side or to the front. In one experiment, models were additionally rotated by 180°, i.e., shown back to front. Fish showed quick associative learning and with only one exception successfully solved and finished all experimental tasks. These results provide first evidence for form constancy in this species and in fish in general. Furthermore, Pseudotropheus seemed to be able to categorize stimuli; a range of turtle and frog models were recognized independently of colour and minor shape variations. Form constancy and categorization abilities may be important for behaviours such as foraging, recognition of predators, and conspecifics as well as for orienting within habitats or territories.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Altbäcker V, Csanyi V (1990) The role of eyespots in predator recognition and antipredatory behaviour of the Paradise Fish, Macropodus opercularis L. Ethology 85:51–57

    Article  Google Scholar 

  2. Altevogt R (1951) Vergleichend-psychologische Untersuchungen an Hühnerrassen unterschiedlicher Körpergrößen. Z Tierphysiol 8:75–109

    Google Scholar 

  3. Altevogt R (1953) Untersuchungen über das optische Auflösungsvermögen der Amsel, Turdus merula. LJF Ornithol 94:220–251

    Article  Google Scholar 

  4. Bisazza A, Brown C (2011) Lateralization of Cognitive Functions in Fish. In: Brown C, Laland K, Krause J (eds) Fish cognition and behavior, 2nd edn. Blackwell Publishing Ltd, Oxford, pp 298–324

    Chapter  Google Scholar 

  5. Bisazza A, Rogers LJ, Vollortigara G (1998) The origins of cerebral asymmetry: a review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neuro Behav Rev 22:411–426

    CAS  Article  Google Scholar 

  6. Broglio C, Gómez A, Durán E et al (2005) Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res Bul 66:277–281. doi:10.1016/j.brainresbull.2005.03.021

    CAS  Article  Google Scholar 

  7. Brown C, Laland K, Krause J (2011) Fish cognition and behavior, 2nd edn. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  8. Burmann B (1998) Visuell Diskriminierungsleistung bei einem Wanderu (Macaca silenus). Rheinische Friedrich—Wilhelms Universität Bonn

  9. Burmann B, Dehnhardt G, Mauck B (2005) Visual information processing in the lion-tailed macaque (Macaca silenus): mental rotation or rotational invariance? Brain Behav Evol 65:168–176. doi:10.1159/000083626

    PubMed  Article  Google Scholar 

  10. Cantalupo C, Bisazza A, Vallortigara G (1995) Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia 33:1637–1646

    CAS  PubMed  Article  Google Scholar 

  11. Carleton K, Harosi F, Kocher T (2000) Visual pigments of African cichlid fishes: evidence for ultraviolet vision microspectrophotometry and DNA sequences. Vis Res 40:879–890

    CAS  PubMed  Article  Google Scholar 

  12. Colwill RM, Raymond MP, Ferreira L, Escudero H (2005) Visual discrimination learning in zebrafish (Danio rerio). Behav Proc 70:19–31. doi:10.1016/j.beproc.2005.03.001

    Article  Google Scholar 

  13. Csanyi V (1985) Ethological analysis of predator avoidanceby the paradise fish (Macropodus opercularis), I Recognition and learning of predators. Behaviour 92:227–240

    Google Scholar 

  14. Csanyi V (1986) Ethological analysis of predator avoidanceby the paradise fish (Macropodus opercularis) II. Key stimuli in avoidance learning. Anim Learn Behav 14:101–109

    Article  Google Scholar 

  15. D’Amato M, Colombo M (1985) Auditory matching-to-sample in monkeys (Cebus apella). Anim Learn Behav 13:375–382

    Article  Google Scholar 

  16. Darmaillacq AS, Dickel L, Rahmani N, Shashar N (2011) Do reef fish, Variola louti and Scarus niger, perform a modal completion? Evidence from a field study. J Comp Psychol 125:273–277

    PubMed  Article  Google Scholar 

  17. Delius J, Hollard V (1995) Grientation invariant pattern recognition by pigeons (Columba liva) and humans (Homo sapiens). J Comp Physiol A 109:278–290

    CAS  Google Scholar 

  18. Dobberfuhl A (2005) Visual acuity, environmental complexity, and social organization in African cichlid fishes. Behav Neurosci 119:1648–1655

    PubMed  Article  Google Scholar 

  19. Douglas RH, Eva J, Guttridge N (1988) Size constancy in goldfish (Carassius auratus). Behav Brain Res 30:37–42

    CAS  PubMed  Article  Google Scholar 

  20. Fernand R (1985) Eye movements in the African cichlid fish, Haplochromis burtoni. J Comp Physiol A 156:199–208

    Article  Google Scholar 

  21. Fernand R, Liebman P (1980) Visual receptor pigments in the African cichlid fish, Haplochromis burtoni. Vis Res 20:857–864

    Article  Google Scholar 

  22. Fine ML, McElroy D, Rafi J, King CB, Loesser KE, Newton S (1996) Lateralization of pectoral stridulation sound production in the channel catfish. Physiol Behav 60:753–757

    CAS  PubMed  Article  Google Scholar 

  23. Frech B (2009) Verhaltensphysiologische Analyse der visuellen Wahrnehmung räumlicher Tiefe beim, PhD Thesis, Johannes Gutenberg-Universität Mainz, pp 134

  24. Frech B, Vogtsberger M, Neumeyer C (2012) Visual discrimination of objects differing in spatial depth by goldfish. J Comp Physiol 198:53–60

    Article  Google Scholar 

  25. Gierszewski S, Bleckmann H, Schluessel V (2013) Cognitive abilities in Malawi Cichlids (Pseudotropheus sp.): matching-to-sample and image/mirror-image discriminations. PLoS ONE 8:e57363. doi:10.1371/journal.pone.0057363

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Graeber RC, Ebbesson SO (1972) Visual discrimination learning in normal and tectal-ablated nurse sharks (Ginglymostoma cirratum). Comp Biochem Physiol 42:131–139

    CAS  Article  Google Scholar 

  27. Guthrie DM (1986) Role of Vision in Fish Behaviour. The behaviour of teleost fishes, In, pp 75–113

    Google Scholar 

  28. Hager H (1938) Untersuchungen über das optische Differenzierungsvermögen der Fische. Zeitschrift für vergleichende Physiologie 26:282–302

    Google Scholar 

  29. Henrichfreise G, Dücker G (1983) Vergleichende Untersuchungen zum Problem des serialen Umkehrlernens bei Fischen (Carassius auratus L., Cyprinus carpio L., Salmo gairdneri Richardson). Zoologischer Anzeiger 211:197–213

    Google Scholar 

  30. Herter K (1929) Dressurversuche an Fischen. Report aus dem Zoologischen Institut der Universität Berlin

  31. Herter K (1930) Weitere Dressurversuche an Fischen. Report aus dem Zoologischen Institut der Universität Berlin

  32. Herter K (1953) Die Fischdressuren und ihre sinnesphysiologischen Grundlagen. p 326

  33. Hobson E (1966) Visual orientation and feeding in seals and sea lions. Nature 210:326–327

    Article  Google Scholar 

  34. Hollard V, Delius J (1982) Rotational invariance in visual pattern recognition by pigeons and humans. Science 218:804–806

    CAS  PubMed  Article  Google Scholar 

  35. Horio G (1938) Die Farb-und Formdressur an Karpfen. Jap J med Sci Trans III Biophys 4:395–402

    Google Scholar 

  36. Huber R, Van Staaden M, Kaufmann LS, Liem KF (1997) Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav Evol 50:167–182

    CAS  PubMed  Article  Google Scholar 

  37. Ingle D (1965) Interocular transfer in goldfish: colour easier than pattern. Science 149:1000–1002

    CAS  PubMed  Article  Google Scholar 

  38. Karplus I, Algom D (1981) Visual cues for predator face recognition by reef fishes. Z Tierphysiol 55:343–364

    Google Scholar 

  39. Karplus I, Goren M, Algom D (1982) A preliminary experimental analysis of predator face recognition by Chromis caeruleus (Pisces, Pomacentridae). Z Tierphysiol 58:53–65

    Google Scholar 

  40. Kirsch JA, Kabanova A, Güntürkün O (2008) Grouping of artificial objects in pigeons: an inquiry into the cognitive architecture of an avian mind. Brain Res Bull 75:485–490

    PubMed  Article  Google Scholar 

  41. Lee SA, Vallortigara G, Ruga V, Sovrano VA (2012) Independent effects of geometry and landmark in a spontaneous reorientation task: a study of two species of fish. Anim Cog 15:861–870

    Article  Google Scholar 

  42. Mackintosh J, Sutherland N (1963) Visual discrimination by the goldfish: the orientation of rectangles. Anim Behav 11:135–141

    Article  Google Scholar 

  43. Mark R (1966) The tectal commissure and interocular transfer of pattern discrimination in cichlid fish. Exp Neurol 16:215–225

    CAS  PubMed  Article  Google Scholar 

  44. Mauck B, Dehnhardt G (1997) Mental rotation in a California Sea Lion (Zalophus Californianus). J Exp Biol 200:1309–1316

    CAS  PubMed  Google Scholar 

  45. Meesters A (1940) Über die organisation des Gesichtsfeldes der Fische. Z Tierpsychol 4:84–149

    Article  Google Scholar 

  46. Miklosi A, Andrew RJ (1999) Right eye use associated with decision to bite in zebrafish. Behav Brain Res 105:199–205

    CAS  PubMed  Article  Google Scholar 

  47. Rowland W (1999) Studying visual cues in fish behaviour: a review of ethological techniques. Environ Biol Fish 56:285–305

    Article  Google Scholar 

  48. Salas C, Broglio C, Durán E et al (2006) Neurophysiology of learning and memory in teleost fish. Zebrafish 3:157–171

    PubMed  Article  Google Scholar 

  49. Saxena A (1960) Lernkapazität, Gedächtnis und Transpositionsvermögen bei Forellen. Zoologisches Jahrbuch, Abteilung Allgemeine Zoologie 69:63–94

    Google Scholar 

  50. Schaller A (1926) Sinnesphysiologische und Psychologische Untersuchungen an Wasserkäfern und Fischen. Zeitschrift für vergleichende Physiologie 4:371–464

    Article  Google Scholar 

  51. Schluessel V, Bleckmann H (2005) Spatial memory and orientation strategies in the elasmobranch Potamotrygon motoro. J Comp Physiol A 191:695–706

    Article  Google Scholar 

  52. Schluessel V, Fricke G, Bleckmann H (2012) Visual discrimination and object categorization in the cichlid Pseudotropheus sp. Anim Cog 15:525–537. doi:10.1007/s10071-012-0480-3

    CAS  Article  Google Scholar 

  53. Schuster S, Rossel S, Schmidtmann A et al (2004) Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey. Curr Biol 14:1565–1568. doi:10.1016/j

    CAS  PubMed  Article  Google Scholar 

  54. Shepard R, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–703

    CAS  PubMed  Article  Google Scholar 

  55. Shumway C (2008) Habitat complexity, brain, and behaviour. Brain Behav Evol 72:123–134. doi:10.1159/000151472

    PubMed  Article  Google Scholar 

  56. Siebeck U, Wallis G, Litherland L (2008) Colour vision in coral reef fish. J Exp Biol 211:354–360

    CAS  PubMed  Article  Google Scholar 

  57. Siebeck U, Litherland L, Wallis G (2009) Shape learning and discrimination in reef fish. J Exp Biol 212:2113–2119. doi:10.1242/jeb.028936

    CAS  PubMed  Article  Google Scholar 

  58. Sovrano VA, Bisazza A (2008) Recognition of partly occluded objects by fish. Anim Cog 11:161–166. doi:10.1007/s10071-007-0100-9

    Article  Google Scholar 

  59. Sovrano VA, Bisazza A (2009) Perception of subjective contours in fish. Perception 38:579–590. doi:10.1068/p6121

    PubMed  Article  Google Scholar 

  60. Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish views it: conjoining geometric and non-geometric information for spatial reorientation. J Exp Psych Anim Behav Proc 29:199–210

    Article  Google Scholar 

  61. Sovrano VA, Bisazza A, Vallortigara G (2007) How fish do geometry in large and in small spaces. Anim Cogn 10:47–54

    PubMed  Article  Google Scholar 

  62. Srinivasan M (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284

    CAS  PubMed  Article  Google Scholar 

  63. Sutherland N (1964) Visual discrimination of animals. Br Med Bull 20:54–59

    CAS  PubMed  Google Scholar 

  64. Truppa V, Sovrano VA, Spinozzi G, Bisazza A (2010) Processing of visual hierarchical stimuli by fish (Xenotoca eiseni). Behav Brain Res 207:51–60

    PubMed  Article  Google Scholar 

  65. Vallortigara G (2004) Visual cognition and representation in birds and primates. In: Rogers LJ, Kaplan G (eds) Vertebrate Comparative Cognition: Are Primates Superior to Non-Primates?. Kluwer Academic/Plenum Publishers, New York, pp 57–94

    Chapter  Google Scholar 

  66. von der Emde G, Behr K, Bouton B et al (2010) 3-Dimensional scene perception during active electrolocation in a weakly electric pulse fish. Front Behav Neurosci 4:26. doi:10.3389/fnbeh.2010.00026

    PubMed Central  PubMed  Google Scholar 

  67. von Frisch K (1913) Weitere Untersuchungen über den Farbensinn der Fische. Zool Jahrb Allg Zool Physiol 34:43–68

    Google Scholar 

  68. von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol 35:1–182

    Google Scholar 

  69. Wohlschläger A (1995) Determinations of mental rotation speed, the relation between mental rotation and rotatory object manipulation. Ruhr- Universität Bochum

  70. Wunder W (1934) Gattenwahlversuche bei Stichling und Bitterling. Deutschen Zoologischen Gesellschaft 36:152–158

    Google Scholar 

  71. Wyzisk K (2005) Experimente zur Form- und Größenwahrnehmung beim Goldfisch (Carassius auratus) unter Verwendung von Scheinkonturen und Größentäuschungen. Johannes-Gutenberg-Universität Mainz

  72. Wyzisk K, Neumeyer C (2007) Perception of illusionary surfaces and contours in goldfish. Vis Neurosci 24:291–298

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Slawa Braun for help with care taking of animals and maintenance of aquaria and J. Mogdans for helpful comments on the manuscript. The research reported herein was performed under the guidelines established by the current German animal protection law. Most of the experimental work presented herein was conducted by H. Strauch as part of her Diploma-Thesis at the University of Bonn.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Schluessel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schluessel, V., Kraniotakes, H. & Bleckmann, H. Visual discrimination of rotated 3D objects in Malawi cichlids (Pseudotropheus sp.): a first indication for form constancy in fishes. Anim Cogn 17, 359–371 (2014). https://doi.org/10.1007/s10071-013-0667-2

Download citation

Keywords

  • Cognition
  • Visual discrimination
  • Object rotation
  • Learning
  • Behaviour