Animal Cognition

, Volume 17, Issue 1, pp 143–155 | Cite as

Human melody singing by bullfinches (Pyrrhula pyrrula) gives hints about a cognitive note sequence processing

  • Jürgen Nicolai
  • Christina Gundacker
  • Katharina Teeselink
  • Hans Rudolf Güttinger
Original Paper


We studied human melody perception and production in a songbird in the light of current concepts from the cognitive neuroscience of music. Bullfinches are the species best known for learning melodies from human teachers. The study is based on the historical data of 15 bullfinches, raised by 3 different human tutors and studied later by Jürgen Nicolai (JN) in the period 1967–1975. These hand-raised bullfinches learned human folk melodies (sequences of 20–50 notes) accurately. The tutoring was interactive and variable, starting before fledging and JN continued it later throughout the birds’ lives. All 15 bullfinches learned to sing alternately melody modules with JN (alternate singing). We focus on the aspects of note sequencing and timing studying song variability when singing the learned melody alone and the accuracy of listening-singing interactions during alternatively singing with JN by analyzing song recordings of 5 different males. The following results were obtained as follows: (1) Sequencing: The note sequence variability when singing alone suggests that the bullfinches retrieve the note sequence from the memory as different sets of note groups (=modules), as chunks (sensu Miller in Psychol Rev 63:81–87, 1956). (2) Auditory–motor interactions, the coupling of listening and singing the human melody: Alternate singing provides insights into the bird’s brain melody processing from listening to the actually whistled part of the human melody by JN to the bird’s own accurately singing the consecutive parts. We document how variable and correctly bullfinches and JN alternated in their singing the note sequences. Alternate singing demonstrates that melody-singing bullfinches did not only follow attentively the just whistled note contribution of the human by auditory feedback, but also could synchronously anticipate singing the consecutive part of the learned melody. These data suggest that both listening and singing may depend on a single learned human melody representation (=coupling between perception and production).


Songbird Melody perception and production Sequencing and timing Auditory–motor interactions Feedback between hearing and singing Internal representation 

Supplementary material

10071_2013_647_MOESM1_ESM.doc (526 kb)
Supplementary material 1 (DOC 527 kb)
10071_2013_647_MOESM2_ESM.mp3 (308 kb)
Supplementary material 2 (MP3 308 kb)

Supplementary material 3 (MPG 21278 kb)

10071_2013_647_MOESM4_ESM.tif (474 kb)
Supplementary material 4 (TIFF 473 kb)
10071_2013_647_MOESM5_ESM.tif (620 kb)
Supplementary material 5 (TIFF 619 kb)
10071_2013_647_MOESM6_ESM.tif (363 kb)
Supplementary material 6 (TIFF 362 kb)
10071_2013_647_MOESM7_ESM.tif (344 kb)
Supplementary material 7 (TIFF 343 kb)
10071_2013_647_MOESM8_ESM.mp3 (638 kb)
Supplementary material 8 (MP3 638 kb)
10071_2013_647_MOESM9_ESM.mp3 (638 kb)
Supplementary material 9 (MP3 638 kb)
10071_2013_647_MOESM10_ESM.tif (1.5 mb)
Supplementary material 10 (TIFF 1510 kb)
10071_2013_647_MOESM11_ESM.mp3 (1.2 mb)
Supplementary material 11 (MP3 1237 kb)
10071_2013_647_MOESM12_ESM.tif (345 kb)
Supplementary material 12 (TIFF 344 kb)
10071_2013_647_MOESM13_ESM.tif (413 kb)
Supplementary material 13 (TIFF 413 kb)
10071_2013_647_MOESM14_ESM.tif (379 kb)
Supplementary material 14 (TIFF 378 kb)
10071_2013_647_MOESM15_ESM.tif (1.1 mb)
Supplementary material 15 (TIFF 1167 kb)
10071_2013_647_MOESM16_ESM.mp3 (144 kb)
Supplementary material 16 (MP3 144 kb)
10071_2013_647_MOESM17_ESM.mp3 (144 kb)
Supplementary material 17 (MP3 144 kb)
10071_2013_647_MOESM18_ESM.mp3 (144 kb)
Supplementary material 18 (MP3 144 kb)
10071_2013_647_MOESM19_ESM.tif (346 kb)
Supplementary material 19 (TIFF 345 kb)
10071_2013_647_MOESM20_ESM.tif (587 kb)
Supplementary material 20 (TIFF 586 kb)


  1. Abe K, Watanabe D (2011) Songbirds possess the spontaneous ability to discriminate syntactic rules. Nat Neurosci 14(8):1067–1074PubMedCrossRefGoogle Scholar
  2. Brehm CB (1832) Handbuch für den Liebhaber der Stuben-, Haus-und aller werthen Vögel. Voigt, IllmenauGoogle Scholar
  3. Brown S, Martinez MJ, Hodges DA, Fox PT, Parsons LM (2004) The song system of the human brain. Cogn Brain Res 20(3):363–375CrossRefGoogle Scholar
  4. Brown S, Martinez MJ, Parsons LM (2006) Music and language side by side in the brain: a PET study of the generation of melodies and sentences. Eur J Neurosci 23:2791–2803PubMedCrossRefGoogle Scholar
  5. Burt JM, O‘Loghlen AL, Templeton CN, Campbell SE, Beecher MD (2007) Assessing the importance of social factors in bird song learning: at test using computer-simulated tutors. Ethology 113:917–925CrossRefGoogle Scholar
  6. Chen JL, Penhune VC, Zatorre RJ (2009) The role of auditory and premotor cortex in sensorimotor transformation. Ann N Y Acad Sci 1169:15–34PubMedCrossRefGoogle Scholar
  7. Fujimoto H, Hasegawa T, Watanabe D (2011) Neural coding of syntactic structure in learned vocalizations in the songbird. J Neurosci 31(27):10023–10033PubMedCrossRefGoogle Scholar
  8. Griffin DR, Speck GB (2004) New evidence of animal consciousness. Anim Cogn 7:5–18PubMedCrossRefGoogle Scholar
  9. Güttinger HR, Dobmeyer S, Schwickert S, Nicolai J (2001) Individual learning and species-uniform song program in the bullfinch (Pyrrhula pyrrhula). In: Kotrschal K, Müller G, Winkler H (eds) Filander, Fürth, pp 313–329Google Scholar
  10. Güttinger HR, Turner T, Dobmeyer S, Nicolai J (2002) Melodiewahrnehmung und Wiedergabe beim Gimpel: untersuchungen an liederpfeifenden und Kanariengesang imitierenden Gimpeln (Pyrrhula pyrrhula). J Ornthol 143:303–318CrossRefGoogle Scholar
  11. Haanstra B (1972) Film fragment from: Bij de Beesten af, “Instinct for survival”Google Scholar
  12. Hamersley J (1717) The bird fancyer’s delight. R. Meares, London (reprinted by Schott, Mainz, 1954)Google Scholar
  13. Henschel G (1903) Bullfinch and canary. Nature 67:609–610CrossRefGoogle Scholar
  14. Holden GH (1895) Canaries and cage birds. Holden, BostonGoogle Scholar
  15. Hultsch H, Todt D (1989) Memorization and reproduction of songs in nightingales (Luscinia megarhynchos): evidence for package formation. J Comp Physiol A 165:197–203CrossRefGoogle Scholar
  16. Hultsch H, Todt D (1992) The serial order effect in the song acquisition of birds: relevance of exposure frequency to song models. Anim Behav 44:590–592CrossRefGoogle Scholar
  17. Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci 6:682–687PubMedCrossRefGoogle Scholar
  18. Jarvis ED, Güntürkün O, Bruce L, Csillag H et al (2005) Avian brains and the new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159PubMedCrossRefGoogle Scholar
  19. Koehler E, Keysers Ch, Umilta MA, Forgassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297:846–848CrossRefGoogle Scholar
  20. Lichau KL (1989) Zur Geschichte der liederpfeifenden Dompfaffen im Vogelsberg Ge. Welt 113(17–18):45–47Google Scholar
  21. Miller G (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–87PubMedCrossRefGoogle Scholar
  22. Naumann JF (1900) Naturgeschichte der Vögel Mitteleuropas, Bd III: Lerchen, Stelzen, Waldsänger und Finkenvögel. Köhler, Gera-UntermhausGoogle Scholar
  23. Nelson DA, Marler P (1994) Selection-based learning in song development. Proc Natl Acad Sci USA 91:10498–10501PubMedCrossRefGoogle Scholar
  24. Nicolai J (1959) Familientradition in der Gesangsentwicklung des Gimpels (Pyrrhula pyrrhula). J Ornithol 100:39–46CrossRefGoogle Scholar
  25. Nicolai J (1969) Akustische Gestaltwahrnehmung, Fehlerkorrektur und Wechselsingen bei Gimpel. In: Bezzel E (ed) Deutsche Ornithologen-Gesellschaft, 81. Jahresversammlung (1968) zu Innsbruck (Sitzungsbericht). J Ornithol 110:514Google Scholar
  26. Pernau FA (1768) Gründliche Anweisung aller Arten von Vögeln zu fangen, einzustellen, abzurichten, zahm zu machen, ihre Eigenschaften zu erkennen, ihnen fremden Gesang zu lernen. Monath, NürnbergGoogle Scholar
  27. Prather JF, Peters S, Nowicki S, Mooney R (2008) Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451:305–310PubMedCrossRefGoogle Scholar
  28. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192PubMedCrossRefGoogle Scholar
  29. Rose GJ, Goller F, Gritton HJ, Plamondon SL, Baugh AT, Cooper BG (2004) Species-typical song in white-crowned sparrows tutored with only phrase pairs. Nature 432:753–758PubMedCrossRefGoogle Scholar
  30. Sakai K, Hikosaka O, Nakamura K (2004) Emergence of rhythm during motor learning. Trends Cogn Sci 8(12):547–553PubMedCrossRefGoogle Scholar
  31. Seibt U, Wickler W (2000) ‘Sympathetic song’: the silent and the overt vocal repertoire, exemplified with a dueting pair of the African slate-coloured Boubou. Laniarius funebris Ethology 106:795–809CrossRefGoogle Scholar
  32. Specht R (2000) Avisoft-SASLab Pro. Sound analysis and synthesis laboratory. Version 422Google Scholar
  33. Suge R, Okanoya K (2010) Perceptual chunking in self-produced songs of Bengalese finches (Lonchura striata var. domestica). Anim Cogn 13:515–523PubMedCrossRefGoogle Scholar
  34. Terrace H (2001) Chunking and serially organized behavior in pigeons, monkey and humans. In Cook RG (ed) Avian visual cognition. Comparative Cognition Press, Medford, MA.
  35. Thorpe WH (1972) Duetting and antiphonal song in birds: its extend and significance. Brill, LeidenGoogle Scholar
  36. Tierney AT, Russo FA, Patel AD (2011) The motor origins of human and avian song structure. Proc Natl Acad Sci USA 108:15510–15515PubMedCrossRefGoogle Scholar
  37. Wallace GW, Rowan JD, Fountain S (2008) Determinants of phrasing effects in rat serial pattern learning. Anim Cogn 11:199–214PubMedCrossRefGoogle Scholar
  38. Williams H, Staples K (1972) Syllable chunking in Zebra finch (Taeniopygia guttata) song. J Comp Psychol 106:278–286CrossRefGoogle Scholar
  39. Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditor-motor interactions in music perception and production. Nat Rev Neurosci 8:547–558PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jürgen Nicolai
    • 1
  • Christina Gundacker
    • 1
  • Katharina Teeselink
    • 1
  • Hans Rudolf Güttinger
    • 1
  1. 1.Abteilung für Allgemeine Zoologie, FB BiologieUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations