Perception of the Ebbinghaus illusion in four-day-old domestic chicks (Gallus gallus)

Abstract

In the Ebbinghaus size illusion, a central circle surrounded by small circles (inducers) appears bigger than an identical one surrounded by large inducers. Previous studies have failed to demonstrate sensitivity to this illusion in pigeons and baboons, leading to the conclusion that avian species (possibly also nonhuman primates) might lack the neural substrate necessary to perceive the Ebbinghaus illusion in a human-like fashion. Such a substrate may have been only recently evolved in the primate lineage. Here, we show that this illusion is perceived by 4-day-old domestic chicks. During rearing, chicks learnt, according to an observational-learning paradigm, to find food in proximity either of a big or of a small circle. Subjects were then tested with Ebbinghaus stimuli: two identical circles, one surrounded by larger and the other by smaller inducers. The percentage of approaches to the perceptually bigger target in animals reinforced on the bigger circle (and vice versa for the other group) was computed. Over four experiments, we demonstrated that chicks are reliably affected by the illusory display. Subjects reinforced on the small target choose the configuration with big inducers, in which the central target appears perceptually smaller; the opposite is true for subjects reinforced on the big target. This result has important implications for the evolutionary history of the neural substrate involved in the perception of the Ebbinghaus illusion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aglioti S, DeSouza JF, Goodale MA (1995) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685

    PubMed  CAS  Google Scholar 

  2. Barbet I, Fagot J (2002) Perception of the corridor illusion by baboons (Papio papio). Behav Brain Res 132:111–115

    PubMed  Google Scholar 

  3. Bayne K, Davis R (1983) Susceptibility of rhesus monkeys (Macaca mulatta) to the Ponzo illusion. Bull Psychonomic Soc 21:476–478

    Google Scholar 

  4. Benowitz LI, Karten HJ (1976) Organization of the tectofugal visual pathway in the pigeon: a retrograde transport study. J Comp Neurol 167:503–520

    PubMed  CAS  Google Scholar 

  5. Bessette BB, Hodos W (1989) Intensity, color, and pattern discrimination deficits after lesions of the core and belt regions of the ectostriatum. Vis Neurosci 2:27–34

    PubMed  CAS  Google Scholar 

  6. Bondarko VM, Semenov LA (2004) Size estimates in Ebbinghaus illusion in adults and children of different age. Hum Physiol 30(1):24–30

    Google Scholar 

  7. Cavoto KK, Cook RG (2001) Cognitive precedence for local information in hierarchical stimulus processing by pigeons. J Exp Psychol Anim Behav Process 27(1):3–16

    PubMed  CAS  Google Scholar 

  8. Cerella J (1980) The pigeon’s analysis of pictures. Pattern Recog 12(1):1–6

    Google Scholar 

  9. Choplin JM, Medin DL (1999) Similarity of the perimeters in the Ebbinghaus illusion. Percept Psychophys 61:3–12

    PubMed  CAS  Google Scholar 

  10. Clara E, Regolin L, Zanforlin M, Vallortigara G (2006) Domestic chicks perceive stereokinetic illusions. Perception 35(7):983–992

    PubMed  Google Scholar 

  11. Cohen DH (1967) The hyperstriatal region of the avian forebrain: a lesion study of possible functions, including its role in cardiac and respiratory conditioning. J Comp Neurol 131:559–570

    PubMed  CAS  Google Scholar 

  12. Cook RG (1992) Dimensional organization and texture discrimination in pigeons. J Exp Psychol Anim Behav Process 18:354–363

    CAS  Google Scholar 

  13. Cook RG, Cavoto KK, Cavoto BR (1996) Mechanisms of multidimensional grouping, fusion, and search. Anim Learn Behav 24:150–167

    Google Scholar 

  14. Coren S, Enns JT (1993) Size contrast as a function of conceptual similarity between test and inducers. Percept Psychophys 54:579–588

    PubMed  CAS  Google Scholar 

  15. Coren S, Porac C, Aks DJ, Morikawa K (1988) A method to assess the relative contribution of lateral inhibition to the magnitude of visual-geometric illusions. Percept Psychophys 43:551–558

    PubMed  CAS  Google Scholar 

  16. Danckert JA, Sharif N, Haffenden AM, Schiff KC, Goodale MA (2002) A temporal analysis of grasping in the Ebbinghaus illusion: planning versus online control. Exp Brain Res 144:275–280

    PubMed  Google Scholar 

  17. De Fockert J, Davidoff J, Fagot J, Parron C, Goldstein J (2007) More accurate size contrast judgments in the Ebbinghaus illusion by a remote culture. J Exp Psychol Hum Percept Perform 3:738–742

    Google Scholar 

  18. De Grave DDJ, Biegstraaten M, Smeets JBJ, Brenner E (2005) Effects of the Ebbinghaus figure on grasping are not only due to misjudged size. Exp Brain Res 163:58–64

    PubMed  Google Scholar 

  19. Deruelle C, Fagot J (1998) Visual search for global/local stimulus features in humans and baboons. Psychonomic Bull Rev 5:476–481

    Google Scholar 

  20. Doherty MJ, Tsuji H, Phillips WA (2008) The context sensitivity of visual size perception varies across cultures. Perception 37:1426–1433

    PubMed  Google Scholar 

  21. Doherty MJ, Campbell NM, Tsuji H, Phillips WA (2010) The Ebbinghaus illusion deceives adults but not young children. Dev Sci 13:714–721

    PubMed  Google Scholar 

  22. Dominguez KE (1954) A study of visual illusions in the monkey. J Genet Psychol 85:105–127

    PubMed  CAS  Google Scholar 

  23. Duemmler T, Franz VH, Jovanovic B, Schwarzer G (2008) Effects of the Ebbinghaus illusion on children’s perception and grasping. Exp Brain Res 186:249–260

    PubMed  Google Scholar 

  24. Ebbinghaus H (1902) Grundzüge der psychologie. Veit & comp, Leipzig

    Google Scholar 

  25. Fagot J, Deruelle C (1997) Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). J Exp Psychol Hum Percept Perform 23:429–442

    PubMed  CAS  Google Scholar 

  26. Fontanari L, Rugani R, Regolin L, Vallortigara G (2011) Object individuation in three-day old chicks: use of property and spatiotemporal information. Dev Sci 14:1235–1244

    PubMed  Google Scholar 

  27. Fredes F, Tapia S, Letelier JC, Marín G, Mpodozis J (2010) Topographic arrangement of the rotundo-entopallial projection in the pigeon (Columba livia). J Comp Neurol 518:4342–4361

    PubMed  Google Scholar 

  28. Fremouw T, Herbranson WT, Shimp CP (1998) Priming of attention to local and global levels of visual analysis. J Exp Psychol Anim Behav Process 24:278–290

    PubMed  CAS  Google Scholar 

  29. Fujita K (1996) Linear perspective and the Ponzo illusion: a comparison between rhesus monkeys and humans. Jpn Psychol Res 38:136–145

    Google Scholar 

  30. Fujita K (1997) Perception of the Ponzo illusion by rhesus monkeys, chimpanzees, and humans: similarity and difference in the three primate species. Percept Psychophys 59:284–292

    PubMed  CAS  Google Scholar 

  31. Fujita K (2001) Perceptual completion in rhesus monkeys (Macaca mulatta) and pigeons (Columba livia). Percept Psychophys 63:115–125

    PubMed  CAS  Google Scholar 

  32. Fujita K (2006) Seeing what is not there: illusion, completion, and spatio-temporal boundary formation in comparative perspective. In: Wasserman EA, Zentall TR (eds) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, New York, pp 29–52

    Google Scholar 

  33. Fujita K, Blough DS, Blough PM (1991) Pigeons see the Ponzo illusion. Anim Learn Behav 19:283–293

    Google Scholar 

  34. Fujita K, Blough DS, Blough PM (1993) Effects of the inclination of context lines on perception of the Ponzo illusion by pigeons. Anim Learn Behav 21:29–34

    Google Scholar 

  35. Ganz L (1966) Mechanism of the figural aftereffects. Psychol Rev 73:128–150

    PubMed  CAS  Google Scholar 

  36. Girgus JS, Coren S, Agdern M (1972) The interrelationship between the Ebbinghaus and Delboeuf illusions. J Exp Psychol 95:453–455

    PubMed  CAS  Google Scholar 

  37. Goodale MA (1983) Visually guided pecking in the pigeon (Columba livia). Brain Behav Evol 22:22–41

    PubMed  CAS  Google Scholar 

  38. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    PubMed  CAS  Google Scholar 

  39. Hanisch C, Konczak J, Dohle C (2001) The effect of the Ebbinghaus illusion on grasping behaviour of children. Exp Brain Res 137:237–245

    PubMed  CAS  Google Scholar 

  40. Happé F (1996) Studying weak central coherence at low levels: children with autism do not succumb to visual illusions. A research note. J Child Psychol Psychiatry 37:873–877

    PubMed  Google Scholar 

  41. Harris AV (1968) Perception of the horizontal-vertical illusion in stumptail monkeys. Radford Rev 22:61–72

    Google Scholar 

  42. Hellmann B, Güntürkün O (1999) Visual-field-specific heterogeneity within the tecto-rotundal projection of the pigeon. Eur J Neurosci 11:2635–2650

    PubMed  CAS  Google Scholar 

  43. Hodos W, Bonbright JC (1974) Intensity difference thresholds in pigeons after lesions of the tectofugal and thalamofugal visual pathways. J Comp Physiol Psychol 87:1013–1031

    PubMed  CAS  Google Scholar 

  44. Hodos W, Karten HJ (1966) Brightness and pattern discrimination deficits in the pigeon after lesions of nucleus rotundus. Exp Brain Res 2:151–167

    PubMed  CAS  Google Scholar 

  45. Hodos W, Karten HJ (1970) Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeons. J Comp Neurol 140:53–68

    PubMed  CAS  Google Scholar 

  46. Hodos W, Karten HJ (1974) Visual intensity and pattern discrimination deficits after lesions of the optic lobe in pigeons. Brain Behav Evol 9:165–194

    PubMed  CAS  Google Scholar 

  47. Hodos W, Macko KA, Bessette BB (1984) Near-field acuity changes after visual system lesions in pigeons II. Telencephalon. Behav Brain Res 13:15–30

    PubMed  CAS  Google Scholar 

  48. Hodos W, Weiss SR, Bessette BB (1986) Size-threshold changes after lesions of the visual telencephalon in pigeons. Behav Brain Res 21:203–214

    PubMed  CAS  Google Scholar 

  49. Hodos W, Weiss SR, Bessette BB (1988) Intensity difference thresholds after lesions of ectostriatum in pigeons. Behav Brain Res 30:43–53

    PubMed  CAS  Google Scholar 

  50. Holmes G (1918) Disturbances of vision by cerebral lesions. Br J Ophthal 2:353–384

    CAS  Google Scholar 

  51. Holmes G (1944) The organization of the visual cortex in man. Proc Roy Soc B 132:348–361

    Google Scholar 

  52. Horton J, Hoyt W (1991) The representation of the visual field in human striate cortex. Arch Ophthalmol 109:816–824

    PubMed  CAS  Google Scholar 

  53. Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate evolution. Nat Rev Neurosci 6:151–159

    PubMed  CAS  Google Scholar 

  54. Kaldy Z, Kovacs I (2003) Visual context integration is not fully developed in 4-year-old children. Perception 32:657–666

    PubMed  Google Scholar 

  55. Kertzman C, Hodos W (1988) Size-difference thresholds after lesions of thalamic visual nuclei in pigeons. Vis Neurosci 1:83–92

    PubMed  CAS  Google Scholar 

  56. Kimchi R (1992) Primacy of wholistic processing and global/local paradigm: a critical review. Psychol Bull 112:24–38

    PubMed  CAS  Google Scholar 

  57. Lamb MR, Robertson LC (1988) The processing of hierarchical stimuli: effects of retinal locus, locational uncertainty and stimulus identity. Percept Psychophys 44:172–181

    PubMed  CAS  Google Scholar 

  58. Lea SEG, Slater AM, Ryan CME (1996) Perception of object unity in chicks: a comparison with the human infant. Infant Behav Dev 19:501–504

    Google Scholar 

  59. Macchi Cassia V, Simion F, Milani I, Umiltà C (2002) Dominance of global visual properties at birth. J Exp Psychol Gen 131(3):398–411

    Google Scholar 

  60. Macko KA, Hodos W (1984) Near-field acuity after visual system lesions in pigeons I. Thalamus. Behav Brain Res 13:1–14

    PubMed  CAS  Google Scholar 

  61. Martinoya C, Rivaud S, Bloch S (1984) Comparing frontal and lateral viewing in pigeons II. Velocity thresholds for movement discrimination. Behav Brain Res 8:375–385

    Google Scholar 

  62. Mascalzoni E, Regolin L (2011) Animal visual perception. Wiley Interdiscip Rev Cogn Sci 2:106–116

    Google Scholar 

  63. Mascalzoni E, Osorio D, Regolin L, Vallortigara G (2012) Symmetry perception by poultry chicks and its implications for three-dimensional objects recognition. Proc R Soc B 279(1730):841–846

    PubMed  Google Scholar 

  64. Massaro DW, Anderson NH (1971) Judgemental model of the Ebbinghaus illusion. J Exp Psychol 89:147–151

    PubMed  CAS  Google Scholar 

  65. Murray SO, Boyaci H, Kersten D (2006) The representation of perceived angular size in human primary visual cortex. Nat Neurosci 9:429–434

    PubMed  CAS  Google Scholar 

  66. Nakamura N, Fujita K, Ushitani T, Miyata H (2006) Perception of the standard and the reversed Müller-Lyer figures in pigeons (Columba livia) and humans (Homo sapiens). J Comp Psychol 120:252–261

    PubMed  Google Scholar 

  67. Nakamura N, Watanabe S, Fujita K (2008) Pigeons perceive the Ebbinghaus-Titchener circles as an assimilation illusion. J Exp Psychol Anim Behav Process 34(3):375–387

    PubMed  Google Scholar 

  68. Nakamura N, Watanabe S, Fujita K (2009) Further analysis of perception of reversed Müller-Lyer figures for pigeons (Columba livia). Percept Mot Skills 108:239–250

    PubMed  Google Scholar 

  69. Navon D (1977) Forest before trees—precedence of global features in visual perception. Cognit Psychol 9:353–383

    Google Scholar 

  70. Nicolas S (1995) Joseph Delboeuf on visual illusions: a historical sketch. Am J Psychol 108:563–574

    Google Scholar 

  71. Oyama T (1960) Japanese studies on the so-called geometrical-optical illusions. Psychologia 3:7–20

    Google Scholar 

  72. Parron C, Fagot J (2007) Comparison of grouping abilities in humans (Homo sapiens) and baboons (Papio papio) with Ebbinghaus illusion. J Comp Psychol 121:405–411

    PubMed  Google Scholar 

  73. Pepperberg IM, Vicinay J, Cavanagh P (2008) Processing of the Müller-Lyer illusion by a grey parrot (Psittacus erithacus). Perception 37:765–781

    PubMed  Google Scholar 

  74. Regolin L, Vallortigara G (1995) Perception of partly occluded objects by young chicks. Percept Psychophys 57:971–976

    PubMed  CAS  Google Scholar 

  75. Regolin L, Tommasi L, Vallortigara G (2000) Visual perception of biological motion in newly hatched chicks as revealed by an imprinting procedure. Anim Cogn 3:53–60

    Google Scholar 

  76. Regolin L, Garzotto B, Rugani R, Pagni P, Vallortigara G (2005a) Working memory in the chick: parallel and lateralized mechanisms for encoding of object- and position-specific information. Behav Brain Res 157:1–9

    PubMed  Google Scholar 

  77. Regolin L, Rugani R, Pagni P, Vallortigara G (2005b) Delayed search for social and nonsocial goals by young domestic chicks Gallus gallus domesticus. Anim Behav 70:855–864

    Google Scholar 

  78. Regolin L, Rugani R, Stancher G, Vallortigara G (2011) Spontaneous discrimination of possible and impossible objects by newly hatched chicks. Biol Lett 7:654–657

    PubMed  Google Scholar 

  79. Reiner A (2005) A new avian brain nomenclature: why, how and what. Brain Res Bull 66:317–331

    PubMed  CAS  Google Scholar 

  80. Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec A Discov Mol Cell EvolBiol 287A:1080–1120

    Google Scholar 

  81. Roberts B, Harris MG, Yates TA (2005) The roles of inducer size and distance in the Ebbinghaus illusion (Titchener circle). Perception 34:847–856

    PubMed  Google Scholar 

  82. Rosa Salva O, Regolin L, Vallortigara G (2010) Faces are special for newly hatched chicks: evidence for inborn domain-specific mechanisms underlying spontaneous preferences for face-like stimuli. Dev Sci 13(4):565–577

    PubMed  Google Scholar 

  83. Rosa Salva O, Farroni T, Regolin L, Vallortigara G, Johnson MH (2011) The evolution of social orienting: evidence from chicks (Gallus gallus) and human newborns. PLoS One 6(4):e18802

    PubMed  Google Scholar 

  84. Rosa Salva O, Regolin L, Vallortigara G (2012) Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behav Brain Res 228:113–143

    Google Scholar 

  85. Rugani R, Regolin L, Vallortigara G (2008) Discrimination of small numerosities in young chicks. J Exp Psychol Anim Behav Process 34:388–399

    PubMed  Google Scholar 

  86. Rugani R, Fontanari L, Simoni E, Regolin L, Vallortigara G (2009) Arithmetic in newborn chicks. Proc Royal Soc B 276:2451–2460

    Google Scholar 

  87. Rugani R, Kelly MD, Szelest I, Regolin L, Vallortigara G (2010a) It is only humans that count from left to righ? Biol Lett 6:290–292

    PubMed  Google Scholar 

  88. Rugani R, Regolin L, Vallortigara G (2010b) Imprinted numbers: newborn chicks’ sensitivity to number versus continuous extent of objects they have been reared with. Dev Sci 13:790–797

    PubMed  Google Scholar 

  89. Rugani R, Regolin L, Vallortigara G (2011) Summation of large numerousness by newborn chicks. Front Psychol 2:179

    PubMed  Google Scholar 

  90. Schmid KL, Wildsoet CF (1998) Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm. Vision Res 38:2629–2634

    PubMed  CAS  Google Scholar 

  91. Schwarzkopf D, Song C, Rees G (2011) The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci 14:28–30

    PubMed  CAS  Google Scholar 

  92. Shimizu T (2004) Comparative cognition and neuroscience: misconceptions about brain evolution. Jpn Psychol Res 46:246–254

    Google Scholar 

  93. Shimizu T, Bowers AN (1999) Visual circuits of the avian telencephalon: evolutionary implications. Behav Brain Res 98:183–191

    PubMed  CAS  Google Scholar 

  94. Shimizu T, Patton TB, Husband SA (2010) Avian visual behavior and the organization of the telencephalon. Brain Behav Evolution 75:204–217

    Google Scholar 

  95. Song C, Schwarzkopf DS, Rees G (2011) Interocular induction of illusory size perception. BMC Neurosci 12:27

    PubMed  Google Scholar 

  96. Spinozzi G, De Lillo C, Truppa V (2003) Global and local processing of hierarchical visual stimuli in tufted capuchin monkeys (Cebus apella). J Comp Psychol 117(1):15–23

    PubMed  Google Scholar 

  97. Suganuma E, Pessoa VF, Monge-Fuentes V, Castro BM, Tavares MCH (2007) Perception of the Müller-Lyer illusion in capuchin monkeys (Cebus apella). Behav Brain Res 182:67–72

    PubMed  Google Scholar 

  98. Timney B, Keil K (1996) Horses are sensitive to pictorial depth cues. Perception 25:1121–1128

    PubMed  CAS  Google Scholar 

  99. Truppa V, Sovrano VA, Spinozzi G, Bisazza A (2010) Processing of visual hierarchical stimuli by fish (Xenoteca eiseni). Behav Brain Res 207(1):51–60

    PubMed  Google Scholar 

  100. Tudusciuc O, Nieder A (2010) Comparison of length judgments and the Müller-Lyer illusion in monkeys and humans. Exp Brain Res 207:221–231

    PubMed  Google Scholar 

  101. Ushitani T, Fujita K, Yamanaka R (2001) Do pigeons (Columba livia) perceive object unity? Anim Cogn 4:153–161

    Google Scholar 

  102. Vallortigara G (2004) Visual cognition and representation in birds and primates. In: Rogers LJ, Kaplan G (eds) Vertebrate comparative cognition: are primates superior to non-primates? Kluwer Academic/Plenum Publishers, New York, pp 57–94

    Google Scholar 

  103. Vallortigara G (2006) The cognitive chicken: visual and spatial cognition in a non-mammalian brain. In: Wasserman EA, Zentall TR (eds) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, Oxford, pp 41–58

    Google Scholar 

  104. Vallortigara G (2012) Core knowledge of object, number, and geometry: a comparative and neural approach. Cogn Neuropsychol 29(1–2):231–236

    Google Scholar 

  105. Vallortigara G, Regolin L (2006) Gravity bias in the interpretation of biological motion by inexperienced chicks. Curr Biol 16:279–280

    Google Scholar 

  106. Vallortigara G, Regolin L, Marconato F (2005) Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biol 3:1312–1316

    CAS  Google Scholar 

  107. Vallortigara G, Snyder A, Kaplan G, Bateson P, Clayton NS, Rogers LJ (2008) Are animals autistic savants? PLoS Biol 6:208–214

    CAS  Google Scholar 

  108. Vallortigara G, Chiandetti C, Rugani R, Sovrano VA, Regolin L (2010) Animal cognition. Wiley interdisciplinary reviews. Cogn Sci 1:882–893

    Google Scholar 

  109. Wade NJ (2005) Perception and illusions, historical perspectives. Springer, Dordrech

    Google Scholar 

  110. Wade NJ (2010) Visual illusions. Corsini encyclopedia of psychology. 1–2

  111. Wang YC, Jiang C, Frost BJ (1993) Visual processing in pigeon nucleus rotundus: luminance, color, motion, and looming subdivisions. Visual Neurosci 10:21–30

    CAS  Google Scholar 

  112. Warden CJ, Baar J (1929) The Müller-Lyer illusion in the ring dove, Turtur risorius. J Comp Psychol 9(4):275–292

    Google Scholar 

  113. Wasserman EA, Kirkpatrick-Steger K, Van Hamme LJ, Biederman I (1993) Pigeons are sensitive to the spatial organization of complex visual stimuli. Psychol Sci 4:336–341

    Google Scholar 

  114. Watanabe S (2001) Discrimination of cartoons and photographs in pigeons: effects of scrambling of elements. Behav Proc 53:3–9

    Google Scholar 

  115. Watanabe S, Nakamura N, Fujita K (2011) Pigeons perceive a reversed Zöllner illusion. Cognition 119:137–141

    PubMed  Google Scholar 

  116. Weintraub DJ (1979) Ebbinghaus illusion: context, contour, and age influence the judged size of a circle admist circles. J Exp Psychol Hum Percept Perform 5:353–364

    PubMed  CAS  Google Scholar 

  117. Weintraub DJ, Schneck MK (1986) Fragments of Delboeuf and Ebbinghaus illusions: contour/context explorations of misjudged circle size. Percept Psychopys 40:147–158

    CAS  Google Scholar 

  118. Winslow CN (1933) Visual illusions in the chick. Arch Physiol 153:1–83

    Google Scholar 

  119. Yamazaki Y, Otsuka Y, Kanazawa S, Yamaguchi MK (2010) Perception of the Ebbinghaus illusion in 5-to-8-month-old infants. Jpn Psychol Res 52(1):33–40

    Google Scholar 

  120. Zanforlin M (1981) Visual perception of complex forms (anomalous surfaces) in chicks. Ital J Psychol 1:1–16

    Google Scholar 

  121. Zanuttini L (1996) Figural and semantic factors in change in the Ebbinghaus illusion across four age groups of children. Percep Motor Skills 82:15–18

    CAS  Google Scholar 

Download references

Acknowledgments

G.V was funded by an ERC Advanced Grant (PREMESOR ERC-2011-ADG_20110406). This study was also supported by the research grant from the University of Padova to R.R. (‘Progetto Giovani’, Bando 2010, Università degli Studi di Padova, prot.: GRIC101142).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments reported here comply with the current Italian and European Community laws for the ethical treatment for animals.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Rosa Salva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosa Salva, O., Rugani, R., Cavazzana, A. et al. Perception of the Ebbinghaus illusion in four-day-old domestic chicks (Gallus gallus). Anim Cogn 16, 895–906 (2013). https://doi.org/10.1007/s10071-013-0622-2

Download citation

Keywords

  • Ebbinghaus illusion
  • Titchener circles
  • Domestic chicks
  • Gallus gallus
  • Comparative study