Skip to main content

Temporal dynamics of information use in learning and retention of predator-related information in tadpoles

Abstract

Due to the high variability in predation risk through space and time, prey have to continuously update information about the risk level posed by predators. Despite numerous studies focusing on temporal risk assessment, we know very little about how individuals deal with information regarding changes in risk level of a given predator through time. In this study, we conditioned tadpoles to recognize a predator as a high or low risk twice 2 weeks apart, in a 2 × 2 design. We tested the responses of the tadpoles 1 and 11 days after each conditioning event. Prey showed responses to the predator 1 day after the first conditioning, but the low-risk group failed to respond to the predator after 11 days. However, we found that information learned during the first conditioning affected the response to the predator after the second conditioning, indicating that prey do not ‘forget’ old information, but simply ignore it. Moreover, tadpoles were able to assess their change in vulnerability over the 2-week period and further extrapolate the risk level of the predator through time to display adaptive threat-sensitive antipredator responses. Our study highlights the complex decision-making that prey use to assess temporal fluctuation in predation risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Bernays EA, Wcislo WT (1994) Sensory capabilities, information processing, and resource specialization. Q Rev Biol 69:187–204

    Article  Google Scholar 

  • Blumstein DT (2010) Flush early and avoid the rush: a general rule of antipredator behavior? Behav Ecol 21(3):440–442. doi:10.1093/beheco/arq030

    Article  Google Scholar 

  • Blumstein DT, Barrow L, Luterra M (2008) Olfactory predator discrimination in yellow-bellied marmots. Ethology 114(11):1135–1143. doi:10.1111/j.1439-0310.2008.01563.x

    Article  Google Scholar 

  • Brown GE, Dreier VM (2002) Predator inspection behaviour and attack cone avoidance in a characin fish: the effects of predator diet and prey experience. Anim Behav 63:1175–1181. doi:10.1006/anbe.2002.3024

    Article  Google Scholar 

  • Brown GE, Magnavacca G (2003) Predator inspection behaviour in a characin fish: an interaction between chemical and visual information? Ethology 109(9):739–750

    Article  Google Scholar 

  • Brown GE, Ferrari MCO, Malka PH, Oligny M-A, Romano M, Chivers DP (2011) Growth rate and retention of learned predator cues in juvenile rainbow trout: faster growing fish forget sooner. Behav Ecol Sociobiol 65:1267–1276

    Article  Google Scholar 

  • Caldwell RL (1992) Recognition, signaling and reduced aggression between former mates in a stomatopod. Anim Behav 44(1):11–19. doi:10.1016/s0003-3472(05)80749-3

    Article  Google Scholar 

  • Chivers DP, Mirza RS (2001) Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. J Chem Ecol 27(1):45–51

    PubMed  Article  CAS  Google Scholar 

  • Chivers DP, Smith RJF (1994) Fathead minnows, Pimephales promelas, acquire predator recognition when alarm substance is associated with the sight of unfamiliar fish. Anim Behav 48(3):597–606

    Article  Google Scholar 

  • Chivers DP, Zhao XX, Brown GE, Marchant TA, Ferrari MCO (2008) Predator-induced changes in morphology of a prey fish: the effects of food level and temporal frequency of predation risk. Evol Ecol 22(4):561–574. doi:10.1007/s10682-007-9182-8

    Article  Google Scholar 

  • Dall SRX, Giraldeau L-A, Olsson O, McNamara JM, Stephens DW (2005) Information and its use by animals in evolutionary ecology. Trends Ecol Evol 20(4):187–193. doi:10.1016/j.tree.2005.01.010

    PubMed  Article  Google Scholar 

  • Dugatkin LA (2009) Principles of animal behavior. W. W Norton, New York

    Google Scholar 

  • Ferrari MCO, Chivers DP (2006) Learning threat-sensitive predator avoidance: how do fathead minnows incorporate conflicting information? Anim Behav 71:19–26. doi:10.1016/j.anbehav.2005.02.016

    Article  Google Scholar 

  • Ferrari MCO, Chivers DP (2008) Cultural learning of predator recognition in mixed-species assemblages of frogs: the effect of tutor-to-observer ratio. Anim Behav 75:1921–1925. doi:10.1016/j.anbehav.2007.10.037

    Article  Google Scholar 

  • Ferrari MCO, Chivers DP (2009) Temporal variability, threat sensitivity and conflicting information about the nature of risk: understanding the dynamics of tadpole antipredator behaviour. Anim Behav 78(1):11–16. doi:10.1016/j.anbehav.2009.03.016

    Article  Google Scholar 

  • Ferrari MCO, Chivers DP (2010) The ghost of predation future: threat-sensitive and temporal assessment of risk by embryonic woodfrogs. Behav Ecol Sociobiol 64(4):549–555. doi:10.1007/s00265-009-0870-y

    Article  Google Scholar 

  • Ferrari MCO, Trowell JJ, Brown GE, Chivers DP (2005) The role of learning in the development of threat-sensitive predator avoidance by fathead minnows. Anim Behav 70:777–784. doi:10.1016/j.anbehav.2005.01.009

    Article  Google Scholar 

  • Ferrari MCO, Messier F, Chivers DP (2007) First documentation of cultural transmission of predator recognition by larval amphibians. Ethology 113(6):621–627. doi:10.1111/j.1439-0310.2007.01362.x

    Article  Google Scholar 

  • Ferrari MCO, Messier F, Chivers DP (2008) Threat-sensitive learning of predators by larval mosquitoes Culex restuans. Behav Ecol Sociobiol 62(7):1079–1083. doi:10.1007/s00265-007-0535-7

    Article  Google Scholar 

  • Ferrari MCO, Brown GE, Messier F, Chivers DP (2009a) Threat-sensitive generalization of predator recognition by larval amphibians. Behav Ecol Sociobiol 63(9):1369–1375. doi:10.1007/s00265-009-0779-5

    Article  Google Scholar 

  • Ferrari MCO, Sih A, Chivers DP (2009b) The paradox of risk allocation: a review and prospectus. Anim Behav 78(3):579–585. doi:10.1016/j.anbehav.2009.05.034

    Article  Google Scholar 

  • Ferrari MCO, Brown GE, Bortolotti GR, Chivers DP (2010a) Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles. Proc R Soc B Biol Sci 277(1691):2205–2210. doi:10.1098/rspb.2009.2117

    Article  Google Scholar 

  • Ferrari MCO, Brown GE, Jackson CD, Malka PH, Chivers DP (2010b) Differential retention of predator recognition by juvenile rainbow trout. Behaviour 147:1791–1802

    Article  Google Scholar 

  • Ferrari MCO, Wisenden BD, Chivers DP (2010c) Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724

    Article  Google Scholar 

  • Ferrari MCO, Brown GE, Bortolotti GR, Chivers DP (2011) Prey behaviour across antipredator adaptation types: how does growth trajectory influence learning of predators? Anim Cogn 14:809–816

    PubMed  Article  Google Scholar 

  • Gonzalo A, Lopez P, Martin J (2009) Learning, memorizing and apparent forgetting of chemical cues from new predators by Iberian green frog tadpoles. Anim Cogn 12(5):745–750. doi:10.1007/s10071-009-0232-1

    PubMed  Article  Google Scholar 

  • Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42(1):1–14

    Article  Google Scholar 

  • Hammond JI, Luttbeg B, Sih A (2007) Predator and prey space use: dragonflies and tadpoles in an interactive game. Ecology 88(6):1525–1535

    PubMed  Article  Google Scholar 

  • Hartman EJ, Abrahams MV (2000) Sensory compensation and the detection of predators: the interaction between chemical and visual information. Proc R Soc B Biol Sci 267(1443):571–575

    Article  CAS  Google Scholar 

  • Hazlett BA, Acquistapace P, Gherardi F (2002) Differences in memory capabilities in invasive and native crayfish. J Crustac Biol 22(2):439–448

    Article  Google Scholar 

  • Healy S (1992) Optimal memory—toward an evolutionary ecology of animal cognition. Trends Ecol Evol 7(12):399–400

    PubMed  Article  CAS  Google Scholar 

  • Helfman GS (1989) Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behav Ecol Sociobiol 24(1):47–58

    Article  Google Scholar 

  • Hirvonen H, Ranta E, Rita H, Peuhkuri N (1999) Significance of memory properties in prey choice decisions. Ecol Model 115:177–189

    Article  Google Scholar 

  • Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M (2008) Experience leaves a lasting structural trace in cortical circuits. Nature 457(7227):313–317

    PubMed  Article  Google Scholar 

  • Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33(3):121–129

    PubMed  Article  CAS  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5(3):361–394

    Google Scholar 

  • Kawecki TJ (2010) Evolutionary ecology of learning: insights from fruit flies. Popul Ecol 52(1):15–25

    Article  Google Scholar 

  • Killeen P (1981) Averaging theory. Quant Steady State Operant Behav: 21–34

  • Kohn NR, Deitloff JM, Dartez SF, Wilcox MM, Jaeger RG (2013) Memory of conspecifics in male salamanders Plethodon cinereus: Implications for territorial defense. Current Zoology (in press)

  • Kraemer PJ, Golding JM (1997) Adaptive forgetting in animals. Psychon Bull Rev 4:480–491

    Article  Google Scholar 

  • Lima SL (1998a) Nonlethal effects in the ecology of predator-prey interactions—What are the ecological effects of anti-predator decision-making? Bioscience 48(1):25–34

    Article  Google Scholar 

  • Lima SL (1998b) Stress and decision making under the risk of predation: Recent developments from behavioral, reproductive, and ecological perspectives. In: Stress and Behavior, vol 27. Advances in the study of behavior. pp 215–290

  • Lima SL, Bednekoff PA (1999) Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am Nat 153(6):649–659

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decision made under the risk of predation—a review and prospectus. Can J Zool 68(4):619–640

    Article  Google Scholar 

  • Luttbeg B, Sih A (2004) Predator and prey habitat selection games: the effects of how prey balance foraging and predation risk. Isr J Zool 50(2–3):233–254

    Article  Google Scholar 

  • McNamara JM, Houston AI (1987) Memory and the efficient use of information. J Theor Biol 125:385–395

    PubMed  Article  CAS  Google Scholar 

  • Mery F, Kawecki TJ (2005) A cost of long-term memory in Drosophilia. Science 308:1148

    PubMed  Article  CAS  Google Scholar 

  • Mirza RS, Chivers DP (2000) Predator-recognition training enhances survival of brook trout: evidence from laboratory and field-enclosure studies. Can J Zool 78(12):2198–2208

    Article  Google Scholar 

  • Mirza RS, Ferrari MCO, Kiesecker JM, Chivers DP (2006) Responses of American toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and acquired predation recognition. Behaviour 143:877–889

    Article  Google Scholar 

  • Ryan MJ, Akre KL, Kirkpatrick M (2009) Cognitive mate choice. In: Dukas R, Ratcliffe JM (eds) Cognitive ecology II. Chicago University Press, Chicago, pp 137–155

    Chapter  Google Scholar 

  • Shoup DE, Wahl DH (2009) The effects of turbidity on prey selection by piscivorous largemouth bass. Trans Am Fish Soc 138:1018–1027

    Article  Google Scholar 

  • Werner EE, Gilliam JF, Hall DJ, Mittelbach GG (1983) An experimental test of the effects of predation risk on habitat use in fish. Ecology 64(6):1540–1548. doi:10.2307/1937508

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wisenden BD, Harter KR (2001) Motion, not shape, facilitates association of predation risk with novel objects by fathead minnows (Pimephales promelas). Ethology 107(4):357–364

    Article  Google Scholar 

  • Wisenden BD, Rugg ML, Korpi NL, Fuselier LC (2009) Lab and field estimates of active time of chemical alarm cues of a cyprinid fish and an amphipod crustacean. Behaviour 146:1423–1442. doi:10.1163/156853909x440998

    Article  Google Scholar 

  • Zentall TR, Roper KL, Sherburne LM (1995) Most directed forgetting in pigeons can be attributed to the absence of reinforcement on forget trials during training or to other procedural artifacts. J Exp Anal Behav 63(2):127–137. doi:10.1901/jeab.1995.63-127

    PubMed  Article  CAS  Google Scholar 

  • Zhao XX, Ferrari MCO, Chivers DP (2006) Threat-sensitive learning of predator odours by a prey fish. Behaviour 143:1103–1121

    Article  Google Scholar 

Download references

Acknowledgments

All work reported herein was performed in accordance with the UCACS Animal Care Protocol 20060014. Funding was provided by NSERC of Canada to DPC and MCOF. A big thanks to Jean and Glen for letting us play in the ponds, to Jana Vrtelova for field assistance and Oliver and Harold for their invaluable moral support during our never-ending observations in mosquito-infected field sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud C. O. Ferrari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrari, M.C.O., Chivers, D.P. Temporal dynamics of information use in learning and retention of predator-related information in tadpoles. Anim Cogn 16, 667–676 (2013). https://doi.org/10.1007/s10071-013-0602-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-013-0602-6

Keywords

  • Temporal risk assessment
  • Information use
  • Memory
  • Learning
  • Threat-sensitive predator avoidance
  • Antipredator behaviour