Skip to main content

Implicit chaining in cotton-top tamarins (Saguinus oedipus) with elements equated for probability of reinforcement

Abstract

Three experiments examined the implicit learning of sequences under conditions in which the elements comprising a sequence were equated in terms of reinforcement probability. In Experiment 1 cotton-top tamarins (Saguinus oedipus) experienced a five-element sequence displayed serially on a touch screen in which reinforcement probability was equated across elements at .16 per element. Tamarins demonstrated learning of this sequence with higher latencies during a random test as compared to baseline sequence training. In Experiments 2 and 3, manipulations of the procedure used in the first experiment were undertaken to rule out a confound owing to the fact that the elements in Experiment 1 bore different temporal relations to the intertrial interval (ITI), an inhibitory period. The results of Experiments 2 and 3 indicated that the implicit learning observed in Experiment 1 was not due to temporal proximity between some elements and the inhibitory ITI. The results taken together support two conclusion: First that tamarins engaged in sequence learning whether or not there was contingent reinforcement for learning the sequence, and second that this learning was not due to subtle differences in associative strength between the elements of the sequence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. Formula was taken from: http://en.wikipedia.org/wiki/Median_absolute_deviation, downloaded 1.2.13.

  2. Formula was obtained from the Statistics and Research Methodology website: https://epilab.ich.ucl.ac.uk/coursematerial/statistics/non_parametric/confidence_interval.html, downloaded 12.28.12.

References

  • Bailey TM, Pothos EM (2008) AGL StimSelect: software for automated selection of stimuli for artificial grammar learning. Behav Res Methods 40:164–176

    PubMed  Article  Google Scholar 

  • Blaisdell AP, Leising KJ, Stahlman W, Waldmann MR (2009) Rats distinguish between absence of events and lack of information in sensory preconditioning. Int J Comp Psychol 22:1–18

    Google Scholar 

  • Blough D (1993) Effects on search speed of the probability of target-distracter combinations. J Exp Psychol Anim B 19:231–243

    Article  Google Scholar 

  • Bond AB, Kamil AC, Balda RP (2003) Social complexity and transitive inference in corvids. Anim Behav 65:479–487

    Article  Google Scholar 

  • Chomsky N (1957) Syntactic structures. Mouton, The Hague/Paris

    Google Scholar 

  • Christie MA, Dalrymple-Alford JC (2004) A new rat model of the human serial reaction time task: contrasting effects of Caudate and Hippocampal lesions. J Neurosci 24:1034–1039

    PubMed  CAS  Article  Google Scholar 

  • Christie MA, Hersch SM (2004) Demonstration of nondeclarative sequence learning in mice: development of an animal analog of the human serial reaction time task. Learn Memory 11:720–723

    Article  Google Scholar 

  • Clegg BA, DiGirolamo GJ, Keele SW (1998) Sequence learning. Trends Cogn Sci 2:275–281

    PubMed  CAS  Article  Google Scholar 

  • Conway CM, Christiansen MH (2001) Sequential learning in non-human primates. Trends Cogn Sci 5:539–546

    PubMed  Article  Google Scholar 

  • D’Amato MR (1991) Comparative cognition: processing of serial order and serial pattern. In: Dachowski L, Flarherty CF (eds) Current topics in animal learning: brain, emotion and cognition. Erlbaum, Hillsdale, pp 165–185

    Google Scholar 

  • Davis H (1992) Transitive inference in rats (Rattus norvegicus). J Comp Psychol 106:342–349

    PubMed  CAS  Article  Google Scholar 

  • Deroost N, Soetens E (2006) Perceptual or motor learning in SRT tasks with complex sequence structures. Psychol Res 70:88–102

    PubMed  Article  Google Scholar 

  • Domenger D, Schwarting RKW (2004) Sequential behavior in the rat: a new model using food-reinforced instrumental behavior. Behav Brain Res 160:197–207

    Article  Google Scholar 

  • Emlen ST (1975) The stellar-orientation system of a migratory bird. Sci Am 233:102–111

    PubMed  CAS  Article  Google Scholar 

  • Espinet A, González F, Balleine BW (2004) Inhibitory sensory preconditioning. Q J Exp Psychol B 57:261–272

    PubMed  Article  Google Scholar 

  • Fantino E, Abarca N (1985) Choice, optimal foraging, and the delay-reduction hypothesis. Behav Brain Sci 8:315–330

    Article  Google Scholar 

  • Fantino E, Preston RA, Dunn R (1993) Delay reduction: current status. J Exp Anal Behav 60:159–169

    PubMed  CAS  Article  Google Scholar 

  • Fitch WT, Hauser MD (2004) Computational constraints on syntactic processing in a nonhuman primate. Science 303:377–380

    PubMed  CAS  Article  Google Scholar 

  • Froehlich AL, Herbranson WT, Loper JD, Wood DM, Shimp CP (2004) Anticipating by pigeons depends on local statistical information in a serial response time task. J Exp Psychol Gen 133:31–45

    PubMed  Article  Google Scholar 

  • Gallistel CR, Gibbon J (2000) Time, rate, and conditioning. Psychol Rev 107:289–344

    PubMed  CAS  Article  Google Scholar 

  • Gentner TQ, Fenn KM, Margoliash D, Nusbaum HC (2006) Recursive syntactic pattern learning by songbirds. Nature 440:1204–1207

    PubMed  CAS  Article  Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325

    Article  Google Scholar 

  • Goschke T (1998) Implicit learning of perceptual and motor sequences: evidence for independent learning systems. In: Stadler MA, Frensch PA (eds) Handbook of implicit learning. Sage, Thousand Oaks, pp 401–444

    Google Scholar 

  • Hauser M, Newport E, Aslin R (2001) Segmentation of the speech stream in a non-human primate: statistical learning in cotton-top tamarins. Cognition 78:B53–B64

    PubMed  CAS  Article  Google Scholar 

  • Herbranson WT, Shimp CP (2003) Artificial grammar learning in pigeons: a preliminary analysis. Learn Behav 31:98–106

    PubMed  Article  Google Scholar 

  • Herbranson WT, Shimp CP (2008) Artificial grammar learning in pigeons. Learn Behav 36:116–137

    PubMed  Article  Google Scholar 

  • Herbranson WT, Stanton GL (2011) Flexible serial response learning by pigeons (Columba livia) and humans (Homo sapiens). J Comp Psychol 125:328–340

    PubMed  Article  Google Scholar 

  • Kenny DT (1953) Testing of differences between variances based on correlated variates. Can J Psychol 7:25–28

    PubMed  CAS  Article  Google Scholar 

  • Locurto C (2005) Further evidence that mice learn a win-shift but not a win-stay contingency under water-escape motivation. J Comp Psychol 119:387–393

    PubMed  Article  Google Scholar 

  • Locurto C, Gagne M, Levesque K (2009) Implicit chaining in cotton top tamarins (Saguinus oedipus). J Exp Psychol Anim B 35:116–122

    Article  Google Scholar 

  • Locurto C, Gagne M, Nutile L (2010) Characteristics of implicit chaining in cotton-top tamarins (Saguinus oedipus). Anim Cogn 13:617–629

    PubMed  Article  Google Scholar 

  • Merritt DJ, Terrace HS (2011) Mechanisms of inferential order judgments in humans (Homo sapiens) and rhesus monkeys (Macaca mulatta). J Comp Psychol 125:227–238

    PubMed  Article  Google Scholar 

  • Merritt D, Maclean EL, Jaffe S, Brannon EM (2007) A comparative analysis of serial ordering in Ring-Tailed Lemurs (Lemur catta). J Comp Psychol 121:363–371

    PubMed  Article  Google Scholar 

  • Nissen MJ, Bullemer P (1987) Attentional requirements of learning: evidence from performance measures. Cogn Psychol 19:1–32

    Article  Google Scholar 

  • Pearce JM, Hall G (1980) A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87:532–552

    PubMed  CAS  Article  Google Scholar 

  • Petkov CI, Erich DJ (2012) Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Front Evol Neurosci 4:12

    PubMed  Article  Google Scholar 

  • Procyk E, Dominey PF, Amiez C, Joseph JP (2000) The effects of sequence structure and reward schedule on serial reaction time learning in the monkey. Cogn Brain Res 9:239–248

    CAS  Article  Google Scholar 

  • Rapp PR, Kansky MT, Eichenbaum H (1996) Learning and memory for hierarchical relationships in the monkey: effects of aging. Behav Neurosci 110:887–897

    PubMed  CAS  Article  Google Scholar 

  • Reber AS (1967) Implicit learning of artificial grammars. J Verb Learn Verb Behav 6:855–863

    Article  Google Scholar 

  • Reber AS (1996) Implicit learning and tacit knowledge: an essay on the cognitive unconscious. Oxford University Press, New York

    Book  Google Scholar 

  • Remillard G (2003) Pure perceptual-based sequence learning. J Exp Psychol Learn Memory Cogn 29:581–597

    Article  Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds) Classical conditioning II: current research and theory. Appleton Century Crofts, New York, pp 64–99

    Google Scholar 

  • Sawa K, Leising KJ, Blaisdell AP (2005) Sensory preconditioning in spatial learning using a touch screen task in pigeons. J Exper Psychol Anim B 31:368–375

    Article  Google Scholar 

  • Scarf D, Colombo M (2008) Representation of serial order: a comparative analysis of humans, monkeys, and pigeons. Brain Res Bull 76:307–312

    PubMed  Article  Google Scholar 

  • Seger CA (1994) Implicit learning. Psychol Bull 115:163–196

    PubMed  CAS  Article  Google Scholar 

  • Soetens E, Melis A, Notebaert W (2004) Sequential effects and sequence learning. Psychol Res 10:124–137

    Article  Google Scholar 

  • Spence KW (1960) Behavior theory and learning. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Staddon J, Higa J, Chelaru I (1999) Time, trace, memory. J Exp Anal Behav 71:293–330

    PubMed  CAS  Article  Google Scholar 

  • Terrace HS (1993) The phylogeny and ontogeny of serial memory: list learning by pigeons and monkeys. Psychol Sci 4:162–169

    Article  Google Scholar 

  • Terrace H (2005) The simultaneous chain: a new approach to serial learning. Trends Cogn Sci 9:202–210

    PubMed  Article  Google Scholar 

  • Terrace HS, McGonigle B (1994) Memory and representation of serial order by children, monkeys, and pigeons. Curr DirI Psychol Sci 3:180–189

    Article  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    PubMed  CAS  Article  Google Scholar 

  • van Tilborg IA, Hulstijn W (2010) Implicit motor learning in patients with Parkinson’s and Alzheimer’s disease: differences in learning abilities? Mot Control 14:344–361

    Google Scholar 

  • von Fersen L, Wynne CD, Delius JD, Staddon JE (1991) Transitive inference formation in pigeons. J Exper Psychol Anim B 17:334–341

    Article  Google Scholar 

  • Yamazaki Y, Suzuki K, Inada M, Iriki A, Okanoya K (2012) Sequential learning and rule abstraction in Bengalese finches. Anim Cogn 15:369–377

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R15RR031220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Locurto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Locurto, C., Dillon, L., Collins, M. et al. Implicit chaining in cotton-top tamarins (Saguinus oedipus) with elements equated for probability of reinforcement. Anim Cogn 16, 611–625 (2013). https://doi.org/10.1007/s10071-013-0598-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-013-0598-y

Keywords

  • Implicit learning
  • Chaining
  • Cotton-top tamarins
  • Finite state grammar