Skip to main content
Log in

Eye as a key element of conspecific image eliciting lateralized response in fish

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Visual lateralization in different aspects of social behaviour has been found for numerous species of vertebrates ranging from fish to mammals. For inspection of a shoal mate, many fishes show a left eye–right hemisphere preference. Here, we tested the hypothesis that in fish, there is a key cue in the conspecific appearance, which elicits lateralized response to the whole image of the conspecific. In a series of eight experiments, we explored eye preferences in cryptic-coloured Amur sleeper, Perccottus glenii, fry. Fish displayed left-eye preferences at the population level for inspection of a group of conspecifics, their own mirror image, and a motionless flat model of a conspecific. In contrast, no population bias was found for scrutinizing an empty environment or a moving cylinder. When fry were showed a model of a conspecific in a lateral view with the eye displaced from the head to the tail, they again showed a significant preference for left-eye use. On the other hand, ‘eyeless’ conspecific model elicited no lateralized viewing in fry. Finally, the left-eye preference was revealed for scrutiny of the image of a conspecific eye alone. We argue that in Amur sleeper fry, eye is the element of the conspecific image, which can serve as a ‘key’ for the initiation of lateralized social response. This key element may serve as a trigger for the rapid recognition of conspecifics in the left eye–right hemisphere system. Possible causes and advantages of lateralized perception of social stimuli and their key elements are discussed in the context of current theories of brain lateralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrew RJ (1991) The nature of behavioural lateralization in the chick. In: Andrew RJ (ed) Neural and behavioural plasticity: the use of the chick as a model. Oxford University Press, Oxford, pp 536–554

    Chapter  Google Scholar 

  • Anfora G, Frasnelli E, Maccagnani B, Rogers LJ, Vallortigara G (2010) Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav Brain Res 206(2):236–239

    Article  PubMed  Google Scholar 

  • Arnott G, Ashton C, Elwood RW (2011) Lateralization of lateral displays in convict cichlids. Biol Lett 7:683–685

    Article  PubMed  Google Scholar 

  • Beeching SC (1993) Eyespots as visual cues in the intraspecific behavior of the cichlid fish Astronotus ocellatus. Copeia 4:1154–1157

    Article  Google Scholar 

  • Bisazza A, Brown C (2011) Lateralization of cognitive functions in fish. In: Brown C, Laland K, Krause J (eds) Fish cognition and behavior. Wiley, Oxford, pp 298–324

    Chapter  Google Scholar 

  • Bisazza A, Dadda M (2005) Enhanced schooling performance in lateralized fishes. P Roy Soc B 272:1677–1681

    Article  Google Scholar 

  • Bisazza A, De Santi A (2003) Lateralization of aggression in fish. Behav Brain Res 141:131–136

    Article  PubMed  Google Scholar 

  • Bisazza A, Pignatti R, Vallortigara G (1997) Laterality in detour behaviour: interspecific variation in poeciliid fish. Anim Behav 54(5):1273–1281

    Article  PubMed  Google Scholar 

  • Bisazza A, De Santi A, Vallortigara G (1999) Laterality and cooperation: Mosquitofish move closer to a predator when the companion is on their left side. Anim Behav 57:1145–1149

    Article  PubMed  Google Scholar 

  • Bisazza A, Cantalupo C, Capocchiano M, Vallortigara G (2000) Population lateralisation and social behaviour: a study with 16 species of fish. Laterality 5:269–284

    PubMed  CAS  Google Scholar 

  • Bisazza A, De Santi A, Bonso S, Sovrano VA (2002) Frogs and toads in front of a mirror: lateralization of response to social stimuli in five tadpole amphibians. Behav Brain Res 134:417–424

    Article  PubMed  Google Scholar 

  • Brown C, Laland KN (2003) Social learning in fishes: a review. Learning in fishes: why they are smarter than you think. Fish Fish 4:280–288 (special edition)

    Google Scholar 

  • Brown C, Gardner C, Braithwaite VA (2004) Population variation in lateralized eye use in the poeciliid Brachyraphis episcopi. Proc R Soc Lond B 271:S455–S457

    Article  Google Scholar 

  • Brown C, Western J, Braithwaite VA (2007) The influence of early experience on, and inheritance of, cerebral lateralization. Anim Behav 74:231–238

    Article  Google Scholar 

  • Dadda M, Bisazza A (2006a) Lateralized female topminnows can forage and attend to a harassing male simultaneously. Behav Ecol 17:358–363

    Article  Google Scholar 

  • Dadda M, Bisazza A (2006b) Does brain asymmetry allow efficient performance of simultaneous tasks? Anim Behav 72:523–529

    Article  Google Scholar 

  • Dadda M, Sovrano VA, Bisazza A (2003) Temporal pattern of social aggregation in tadpoles and its influence on the measurement of lateralised response to social stimuli. Physiol Behav 78:337–341

    Article  PubMed  CAS  Google Scholar 

  • De Santi A, Sovrano VA, Bisazza A, Vallortigara G (2001) Mosquitofish display differential left- and right-eye use during mirror-image scrutiny and predator-inspection responses. Anim Behav 61:305–310

    Article  Google Scholar 

  • De Santi A, Bisazza A, Vallortigara G (2002) Complementary left and right eye use during predator inspection and shoal-mate scrutiny in minnows. J Fish Biol 60:1116–1125

    Article  Google Scholar 

  • Dmitriev MA (1971) Look out, rotan. Rybovodstvo i Rybolovstvo 1:26–27 (in Russian)

    Google Scholar 

  • Engeszer RE, Ryan MJ, Parichy DM (2004) Learned social preference in zebrafish. Curr Biol 14:881–884

    Article  PubMed  CAS  Google Scholar 

  • Engeszer RE, Da Barbiano LA, Ryan MJ, Parichy DM (2007a) Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim Behav 74(5):1269–1275

    Article  PubMed  Google Scholar 

  • Engeszer RE, Patterson LB, Rao AA, Parichy DM (2007b) Zebrafish in the Wild: a review of natural history and new notes from the field. Zebrafish 4:21–40

    Article  PubMed  Google Scholar 

  • Frasnelli E, Vallortigara G, Rogers LJ (2012) Left–right asymmetries of behaviour and nervous system in invertebrates. Neurosci Biobehav Rev 36(4):1273–1291

    Article  PubMed  Google Scholar 

  • George I (2010) Hemispheric asymmetry of Songbirds. In: Hugdahl K, Westerhausen R (eds) The two halves of the brain: information processing in the cerebral hemispheres. MIT Press, Cambridge, pp 91–120

    Google Scholar 

  • Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: a game theoretical analysis of population structure. P Roy Soc B-Biol Sci 271:853–857

    Article  Google Scholar 

  • Ghirlanda S, Frasnelli E, Vallortigara G (2009) Intraspecific competition and coordination in the evolution of lateralization. Philos T Roy Soc B 364:861–866

    Article  Google Scholar 

  • Giljov AN, Karenina KA, Malashichev YB (2009) An eye for a worm: Lateralisation of feeding behaviour in aquatic anamniotes. Laterality 14(3):273–286

    PubMed  Google Scholar 

  • Gómez-Laplaza LM, Gil-Carnicero P (2008) Imprinting in fish: a little explored phenomenon with possible implications for fish welfare. Ann Rev Biomed Sci 10:51–62

    Google Scholar 

  • Hirnstein M, Hausmann M, Güntürkün O (2008) The evolutionary origins of functional cerebral asymmetries in humans: does lateralization enhance parallel processing? Behav Brain Res 187:297–303

    Article  PubMed  Google Scholar 

  • Kaarthigeyan J, Dharmaretnam M (2005) Relative levels of motivation and asymmetries of viewing and detour task in guppies (Poecilia reticulata). Behav Brain Res 159:37–41

    Article  PubMed  CAS  Google Scholar 

  • Karenina K, Giljov A, Baranov V, Osipova L, Krasnova V, Malashichev Y (2010) Visual laterality of calf–mother interactions in wild whales. PLoS One 5(11):e13787

    Article  PubMed  Google Scholar 

  • MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left and right brain. Sci Am 301:60–67

    Article  PubMed  Google Scholar 

  • Malashichev Y (2006) Is there a link between visceral and neurobehavioural asymmetries in development and evolution? In: Malashichev YB, Deckel W (eds) Behavioural and morphological asymmetries in vertebrates. Georgetown, Landes Bioscience, pp 33–44

    Google Scholar 

  • Martin FD, Hengstebeck MF (1981) Eye colour and aggression in juvenile guppies, Poecilia reticulata peters (Pisces: Poeciliidae). Anim Behav 29(2):325–331

    Article  Google Scholar 

  • Miletto Petrazzini ME, Agrillo C, Piffer L, Dadda M, Bisazza A (2012) Development and application of a new method to investigate cognition in newborn guppies. Behav Brain Res 233(2):443–449

    Article  PubMed  Google Scholar 

  • Miyai CA, Carretero Sanches FH, Tânia MC, Colpo KD, Volpato GL, Barreto RE (2011) The correlation between subordinate fish eye colour and received attacks: a negative social feedback mechanism for the reduction of aggression during the formation of dominance hierarchies. Zool 114:335–339

    Article  Google Scholar 

  • Nepomnyashchikh VA, Izvekov EI (2006) Variability of the behavioral laterality in Teleostei (Pisces). J Ichthyol 46(S2):S235–S242

    Article  Google Scholar 

  • Pitcher TJ, Parrish JK (1993) Functions of shoaling behaviour in teleosts. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman & Hall, London, pp 363–439

    Chapter  Google Scholar 

  • Pizzagalli D, Regard M, Lehmann D (1999) Rapid emotional face processing in the human right and left brain hemispheres: an ERP study. NeuroReport 10(13):2691–2698

    Article  PubMed  CAS  Google Scholar 

  • Price AC, Weadick CJ, Shim J, Rodd FH (2008) Pigments, patterns, and fish behavior. Zebrafish 5:297–307

    Article  PubMed  Google Scholar 

  • Robins A, Lipollis G, Bisazza A, Vallortigara G, Rogers LJ (1998) Lateralized agonistic responses and hindlimb use in toads. Anim Behav 56:875–881

    Article  PubMed  Google Scholar 

  • Rogers LJ (1989) Laterality in animals. Int J Comp Psychol 3:5–25

    Google Scholar 

  • Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73(2):236–253

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ (2002) Lateralization in vertebrates: its early evolution, general pattern, and development. In: Slater PJB, Rosenblatt J, Snowdon C, Roper T (eds) Advances in the study of behavior, vol 31. Academic Press, New York, pp 107–162

    Google Scholar 

  • Rogers LJ, Andrew RJ (2002) Comparative vertebrate lateralization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rogers LJ, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. Proc R Soc Lond B 271(suppl.):420–422

    Article  Google Scholar 

  • Rosa Salva O, Regolin L, Mascalzoni E, Vallortigara G (2012) Cerebral and behavioural asymmetries in animal social recognition. Comp Cogn Behav Rev 7:110–138

    Article  Google Scholar 

  • Rowland WJ (2000) Habituation and development of response specificity to a sign stimulus: male preference for female courtship posture in stickleback. Anim Behav 60:63–68

    Article  PubMed  Google Scholar 

  • Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to con-specific, heterospecific, and computer animated fish. Behav Brain Res 191:77–87

    Article  PubMed  Google Scholar 

  • Schroder S, Zaret T (1979) The adaptive significance of color patterns in Cichla ocellaris. Copeia 1:43–47

    Article  Google Scholar 

  • Sovrano VA (2004) Visual lateralization in response to familiar and unfamiliar stimuli in fish. Behav Brain Res 152:385–391

    Article  PubMed  Google Scholar 

  • Sovrano V, Andrew R (2006) Eye use during viewing a reflection: behavioral lateralization in zebrafish larvae. Behav Brain Res 167:226–231

    Article  PubMed  CAS  Google Scholar 

  • Sovrano V, Rainoldi C, Bisazza A, Vallortigara G (1999) Roots of brain specializations preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav Brain Res 106:175–180

    Article  Google Scholar 

  • Sovrano V, Bisazza A, Vallortigara G (2001) Lateralization of response to social stimuli in fishes: a comparison between different methods and species. Physiol Brain 74:237–244

    Article  CAS  Google Scholar 

  • ten Cate C (2009) Niko Tinbergen and the red patch on the herring gull’s beak. Anim Behav 77:785–794

    Article  Google Scholar 

  • Tinbergen N (1948) Social releasers and the experimental method required for their study. Wils Bull 60(1):6–51

    Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, London

    Google Scholar 

  • Vallortigara G (1992) Right hemisphere advantage for social recognition in the chick. Neuropsychologia 30:761–768

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G (2006a) The evolution of behavioural and brain asymmetries: bridging together neuropsychology and evolutionary biology. In: Malashichev Y, Deckel W (eds) Behavioral and morphological asymmetries in vertebrates. Landes Bioscience, Austin, pp 1–20

    Google Scholar 

  • Vallortigara G (2006b) The evolutionary psychology of left and right: costs and benefits of lateralization. Dev Psychobiol 48:418–427

    Article  PubMed  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589

    PubMed  Google Scholar 

  • Vallortigara G, Cozzutti C, Tommasi L, Rogers LJ (2001) How birds use their eyes: opposite left–right specialisation for the lateral and frontal visual hemifield in the domestic chick. Curr Biol 11:29–33

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Chiandetti C, Sovrano VA (2011) Brain asymmetry (animal). WIREs Cogn Sci 2:146–157

    Article  Google Scholar 

  • Vanegas H, Ito H (1983) Morphological aspects of the teleostean visual system: a review. Brain Res Rev 6:117–137

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank Antonina Smorkatcheva (St-Petersburg State University), Evgeny Izvekov and Valentin Nepomnyashchikh (Institute for Biology of Inland Waters RAS) for useful comments on this work. This study was supported by the Federal Grant-in-Aid Program ‘Human Capital for Science and Education in Innovative Russia’ (Governmental Contract No. P2379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yegor B. Malashichev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karenina, K.A., Giljov, A.N. & Malashichev, Y.B. Eye as a key element of conspecific image eliciting lateralized response in fish. Anim Cogn 16, 287–300 (2013). https://doi.org/10.1007/s10071-012-0572-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0572-0

Keywords

Navigation