Skip to main content

Contextual Pavlovian conditioning in the crab Chasmagnathus

Abstract

In contextual conditioning, a complex pattern of information is processed to associate the characteristics of a particular place with incentive or aversive reinforcements. This type of learning has been widely studied in mammals, but studies of other taxa are scarce. The context-signal memory (CSM) paradigm of the crab Chasmagnathus has been extensively used as a model of learning and memory. Although initially interpreted as habituation, some characteristics of contextual conditioning have been described. However, no anticipatory response has been detected for animals exposed to the training context. Thus, CSM could be interpreted either as an associative habituation or as contextual conditioning that occurs without a context-evoked anticipatory response. Here, we describe a training protocol developed for contextual Pavlovian conditioning (CPC). For each training trial, the context (conditioned stimulus, CS) was discretely presented and finished together with the unconditioned stimulus (US). In agreement with the CSM paradigm, a robust freezing response was acquired during the 15 training trials, and clear retention was found when tested with the US presentation after short (2 and 4 h) and long (1–4 days) delays. This CPC memory showed forward but not simultaneous presentation conditioning and was context specific and protein synthesis dependent. Additionally, a weak CPC memory was enhanced during consolidation. One day after training, CPC was extinguished by repeated CS presentation, while one presentation induced a memory labilisation–reconsolidation process. Finally, we found an anticipatory conditioned response (CR) during the CS presentation for both short-term (4 h) and long-term memory (24 h). These findings support the conditioning nature of the new paradigm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alberini CM (2008) The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiol Learn Mem 89:234–246

    PubMed  Article  CAS  Google Scholar 

  2. Anagnostaras SG, Gale GD, Fanselow MS (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11:8–17

    PubMed  Article  CAS  Google Scholar 

  3. Anokhin KV, Tiunova AA, Rose SPR (2002) Reminder effects—reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci 15:1759–1765

    PubMed  Article  Google Scholar 

  4. Berón de Astrada M, Sztarker J, Tomsic D (2001) Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo. J Comp Physiol A 187:37–44

    PubMed  Article  Google Scholar 

  5. Boccia M, Freudenthal R, Blake M, de la Fuente V, Acosta G, Baratti C, Romano A (2007) Activation of hippocampal nuclear factor-kappa B by retrieval is required for memory reconsolidation. J Neurosci 27:13436–13445

    PubMed  Article  CAS  Google Scholar 

  6. Brembs B, Wiener J (2006) Context and occasion setting in Drosophila visual learning. Learn Mem 13:618–628

    PubMed  Article  Google Scholar 

  7. Burnovicz A, Hermitte G (2010) Conditioning of an autonomic response in Crustacea. Physiol Behav 101:168–175

    PubMed  Article  CAS  Google Scholar 

  8. Carbó Tano M, Molina VA, Maldonado H, Pedreira ME (2009) Memory consolidation and reconsolidation in an invertebrate model: the role of the GABAergic system. Neuroscience 158:387–401

    PubMed  Article  Google Scholar 

  9. de la Fuente V, Freudenthal R, Romano A (2011) Reconsolidation or extinction: transcription factor switch in the determination of memory course after retrieval. J Neurosci 31:5562–5573

    PubMed  Article  Google Scholar 

  10. Eisenberg M, Kobilo T, Berman DE, Dudai Y (2003) Stability of retrieved memory: inverse correlation with trace dominance. Science 301:1102–1104

    PubMed  Article  CAS  Google Scholar 

  11. Freudenthal R, Boccia MM, Acosta GB, Blake MG, Merlo E, Baratti CM, Romano A (2005) NF-kappaB transcription factor is required for inhibitory avoidance long-term memory in mice. Eur J Neurosci 21:2845–2852

    PubMed  Article  Google Scholar 

  12. Hall G (1994) Pavlovian conditioning: laws of association. In: Mackintosh NJ (ed) Animal learning and cognition, 2nd edn. Academic Press, New York, pp 12–43

    Google Scholar 

  13. Hawkins RD, Carew TJ, Kandel ER (1986) Effects of interstimulus interval and contingency on classical conditioning of the Aplysia siphon withdrawal reflex. J Neurosci 6:1695–1701

    PubMed  CAS  Google Scholar 

  14. Hepp Y, Pérez-Cuesta LM, Maldonado H, Pedreira ME (2010) Extinction memory in the crab Chasmagnathus: recovery protocols and effects of multi-trial extinction training. Anim Cogn 13:391–403

    PubMed  Article  Google Scholar 

  15. Hoeger U, Florey E (1989) Catecholamine degradation in the hemolymph of the Chinese crab, Eriocheir Sinensis. Comp Biochem Physiol Part C Comp Pharmacol 92:323–327

    Article  Google Scholar 

  16. Holland PC (1983) Occasion setting in Pavlovian feature positive discriminations. In Commons ML, Herrnstein RJ, Wagner AR (eds) Quantitative analyses of behavior: discrimination processes, vol 4. Ballinger, New York, pp 183–206

  17. Howell DC (1987) Statistical methods of psychology, 2nd edn. Duxbury, Boston

    Google Scholar 

  18. Liu L, Wolf R, Ernst R, Heisenberg M (1999) Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400:753–756

    PubMed  Article  CAS  Google Scholar 

  19. Lozada M, Romano A, Maldonado H (1990) Long-term habituation to a danger stimulus in the crab Chasmagnathus granulatus. Physiol Behav 47:35–41

    PubMed  Article  CAS  Google Scholar 

  20. Lubin FD, Sweatt JD (2007) The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 55:942–957

    PubMed  Article  CAS  Google Scholar 

  21. Maldonado H, Romano A, Tomsic D (1997) Long-term habituation (LTH) in the crab Chasmagnathus: a model for behavioral and mechanistic studies of memory. Braz J Med Biol Res 30:813–826

    PubMed  Article  CAS  Google Scholar 

  22. Meffert MK, Baltimore D (2005) Physiological functions for brain NF-kappaB. Trends Neurosci 28:37–43

    PubMed  Article  CAS  Google Scholar 

  23. Merlo E, Romano A (2008) Memory extinction entails the inhibition of the transcription factor NF-kappaB. PLoS ONE 3:e3687

    PubMed  Article  Google Scholar 

  24. Merlo E, Freudenthal R, Romano A (2002) The IkappaB kinase inhibitor sulfasalazine impairs long-term memory in the crab Chasmagnathus. Neuroscience 112:161–172

    PubMed  Article  CAS  Google Scholar 

  25. Merlo E, Freudenthal R, Maldonado H, Romano A (2005) Activation of the transcription factor NF-kappaB by retrieval is required for long-term memory reconsolidation. Learn Mem 12:23–29

    PubMed  Article  Google Scholar 

  26. Nader K, Schafe GE, LeDoux JE (2000) The labile nature of consolidation theory. Nat Rev Neurosci 1:216–219

    PubMed  Article  CAS  Google Scholar 

  27. Pedreira ME, Maldonado H (2003) Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38:863–869

    PubMed  Article  CAS  Google Scholar 

  28. Pedreira ME, Dimant B, Tomsic D, Quesada-Allue LA, Maldonado H (1995) Cycloheximide inhibits context memory and long-term habituation in the crab Chasmagnathus. Pharmacol Biochem Behav 52:385–395

    PubMed  Article  CAS  Google Scholar 

  29. Pedreira ME, Dimant B, Maldonado H (1996) Inhibitors of protein and RNA synthesis block context memory and long-term habituation in the crab Chasmagnathus. Pharmacol Biochem Behav 54:611–617

    PubMed  Article  CAS  Google Scholar 

  30. Pedreira ME, Romano A, Tomsic D, Lozada M, Maldonado H (1998) Massed and spaced training build up different components of long-term habituation in the crab Chasmagnathus. Anim Learn Behav 26:34–45

    Article  Google Scholar 

  31. Pedreira ME, Pérez-Cuesta LM, Maldonado H (2002) Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J Neurosci 22:8305–8311

    PubMed  CAS  Google Scholar 

  32. Pedreira ME, Pérez-Cuesta LM, Maldonado H (2004) Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learn Mem 11:579–585

    PubMed  Article  Google Scholar 

  33. Pereyra P, González Portino E, Maldonado H (2000) Long-lasting and context-specific freezing preference is acquired after spaced repeated presentations of a danger stimulus in the crab Chasmagnathus. Neurobiol Learn Mem 74:119–134

    PubMed  Article  CAS  Google Scholar 

  34. Pérez-Cuesta LM, Maldonado H (2009) Memory reconsolidation and extinction in the crab: mutual exclusion or coexistence? Learn Mem 16:714–721

    PubMed  Article  Google Scholar 

  35. Pérez-Cuesta LM, Hepp Y, Pedreira ME, Maldonado H (2007) Memory is not extinguished along with CS presentation but within a few seconds after CS-offset. Learn Mem 14:101–108

    PubMed  Article  Google Scholar 

  36. Romano A, Lozada M, Maldonado H (1990) Effect of naloxone pretreatment on habituation in the crab Chasmagnathus granulatus. Behav Neural Biol 53:113–122

    PubMed  Article  CAS  Google Scholar 

  37. Romano A, Lozada M, Maldonado H (1991) Nonhabituation processes affect stimulus specificity of response habituation in the crab Chasmagnathus granulatus. Behav Neurosci 105:542–552

    PubMed  Article  CAS  Google Scholar 

  38. Romano A, Freudenthal R, Merlo E, Routtenberg A (2006a) Evolutionarily-conserved role of the NF-kappaB transcription factor in neural plasticity and memory. Eur J Neurosci 24:1507–1516

    PubMed  Article  Google Scholar 

  39. Romano A, Locatelli F, Freudenthal R, Merlo E, Feld M, Ariel P, Lemos D, Federman N, Fustiñana MS (2006b) Lessons from a crab: molecular mechanisms in different memory phases of Chasmagnathus. Biol Bull 210:280–288

    PubMed  Article  CAS  Google Scholar 

  40. Rosenthal R, Rosnow RL (1985) Contrast analysis focused comparisons in the analysis of variance. Cambridge University Press, Cambridge, UK

    Google Scholar 

  41. Sangha S, Scheibenstock A, Lukowiak K (2003) Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J Neurosci 23:8034–8040

    PubMed  CAS  Google Scholar 

  42. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37

    PubMed  CAS  Google Scholar 

  43. Suárez LD, Smal L, Delorenzi A (2010) Updating contextual information during consolidation as result of a new memory trace. Neurobiol Learn Mem 93:561–571

    PubMed  Article  Google Scholar 

  44. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795

    PubMed  Article  CAS  Google Scholar 

  45. Sztarker J, Tomsic D (2011) Brain modularity in arthropods: individual neurons that support “what” but not “where” memories. J Neurosci 31:8175–8180

    PubMed  Article  CAS  Google Scholar 

  46. Tomsic D, Maldonado H, Rakitin A (1991) Morphine and GABA: effects on perception, escape response and long-term habituation to a danger stimulus in the crab Chasmagnathus. Brain Res Bull 26:699–706

    PubMed  Article  CAS  Google Scholar 

  47. Tomsic D, Romano A, Maldonado H (1998) Behavioral and mechanistic bases of long-term habituation in the crab Chasmagnathus. Adv Exp Med Biol 446:17–35

    PubMed  Article  CAS  Google Scholar 

  48. Tomsic D, de Astrada MB, Sztarker J, Maldonado H (2009) Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus. Neurobiol Learn Mem 92:176–182

    PubMed  Article  Google Scholar 

  49. Whitlow Jw, Wagner AR (1984) Memory and habituation, In Peeke HVS, Petrinovich L (eds) Habituation. sensitization and behavior. Academic Press, New York, pp 103–153

Download references

Acknowledgments

This work was supported by FONCYT (grant PICT-1492; grant PICT2006-01161), CONICET (grant PIP-11220100100169) and UBACYT (grant X-198). We thank Dr. Liliana Orelli for language correction and Angel Vidal for technical assistance.

Ethical standards

Experimental procedures are in compliance with the National Institutes of Health Guide for Care and Use of Laboratory Animals (USA), and the Argentinean guidelines on the ethical use of animals. All the experiments performed in this work were planned minimising the number of animals used and their suffering.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Pedreira.

Additional information

María Sol Fustiñana and Martín Carbó Tano contributed equally to this paper.

Arturo Romano and María Eugenia Pedreira contributed equally to this paper.

In memoriam to our science mentor Héctor Maldonado. A true scientist who inspired us with his illimitable creativity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fustiñana, M.S., Carbó Tano, M., Romano, A. et al. Contextual Pavlovian conditioning in the crab Chasmagnathus . Anim Cogn 16, 255–272 (2013). https://doi.org/10.1007/s10071-012-0570-2

Download citation

Keywords

  • Contextual conditioning
  • Consolidation
  • Reconsolidation
  • Extinction
  • Invertebrates