Animal Cognition

, Volume 15, Issue 4, pp 591–596 | Cite as

Cuttlefish rely on both polarized light and landmarks for orientation

  • Lelia Cartron
  • Anne-Sophie Darmaillacq
  • Christelle Jozet-Alves
  • Nadav Shashar
  • Ludovic DickelEmail author
Original Paper


Cuttlefish are sensitive to linear polarization of light, a sensitivity that they use in predation and possibly in intraspecific communication. It has also been shown that cuttlefish are able to solve a maze using visual landmarks. In this study, cuttlefish were trained to solve a Y-maze with the e-vector of a polarized light and landmarks as redundant spatial information. The results showed that cuttlefish can use the e-vector orientation and landmarks in parallel to orient and that they are able to use either type of cue when the other one is missing. When they faced conflicting spatial information in the experimental apparatus, the majority of cuttlefish followed the e-vector rather than landmarks. Differences in response latencies in the different conditions of testing (training with both types of cue, tests with single cue or with conflicting information) were observed and discussed in terms of decision making. The ability to use near field and far field information may enable animals to interpret the partially occluded underwater light field.


Navigation Polarized light Landmarks Cephalopods 



We thank the staff of the CREC for their technical assistance. This research was supported by a grant from the Ministère de l’Enseignement Supérieur et de la Recherche to L.C.


  1. Alves C, Chichery R, Boal JG, Dickel L (2007) Orientation in the cuttlefish Sepia officinalis: response versus place learning. Anim Cogn 10:29–36. doi: 10.1007/s10071-006-0027-6 PubMedCrossRefGoogle Scholar
  2. Boal JG, Shashar N, Grable M, Vaughan K, Loew E, Hanlon RT (2004) Behavioral evidence for intraspecific signaling with achromatic and polarized light by cuttlefish (Mollusca: Cephalopoda). Behaviour 141:837–861. doi: 10.1163/1568539042265662 CrossRefGoogle Scholar
  3. Darmaillacq A-S, Chichery R, Poirier R, Dickel L (2004) Effect of early feeding experience on subsequent prey preference by cuttlefish, Sepia officinalis. Dev Psychobiol 45:239–244. doi: 10.1002/dev.20034 PubMedCrossRefGoogle Scholar
  4. Darmaillacq A-S, Chichery R, Shashar N, Dickel L (2006) Early familiarization overrides innate prey preference in newly hatched Sepia officinalis cuttlefish. Anim Behav 71:511–514. doi: 10.1016/j.anbehav.2005.04.019 CrossRefGoogle Scholar
  5. Dickel L, Boal JG, Budelmann BU (2000) The effect of early experience on learning and memory in cuttlefish. Dev Psychobiol 36:101–110PubMedCrossRefGoogle Scholar
  6. Diez-Chamizo V, Sterio D, Mackintosh NJ (1985) Blocking and overshadowing between intra-maze and extra-maze cues: a test of the independence of locale and guidance learning. Q J Exp Psychol B 37:235–253CrossRefGoogle Scholar
  7. Gallistel CR (1990) The organization of learning. The MIT Press, CambridgeGoogle Scholar
  8. Gibson BM, Shettleworth SJ (2003) Competition among spatial cues in a naturalistic food-carrying task. Anim Learn Behav 31:143–159CrossRefGoogle Scholar
  9. Gibson BM, Shettleworth SJ (2005) Place versus response learning revisited: tests of blocking on the radial maze. Behav Neurosci 119:567–586. doi: 10.3758/BF03195977 PubMedCrossRefGoogle Scholar
  10. Healy S (1998) Spatial representation in animals. Oxford University Press, OxfordGoogle Scholar
  11. Horvath G, Varju D (2004) Polarized light in animal vision: polarization patterns in nature. Springer, BerlinGoogle Scholar
  12. Jander R, Waterman TH (1960) Sensory discrimination between polarized light and light intensity patterns by arthropods. J Cell Comp Physiol 56:137–159. doi: 10.1002/jcp.1030560304 Google Scholar
  13. Jander R, Daumer K, Waterman TH (1963) Polarized light orientation by two Hawaiian decapod cephalopods. Z Vgl Physiol 46:383–394. doi: 10.1007/BF00340466 CrossRefGoogle Scholar
  14. Jozet-Alves C, Moderan J, Dickel L (2008) Sex differences in spatial cognition in an invertebrate: the cuttlefish. Proc R Soc B 275:2049–2054. doi: 10.1037/0735-7044.119.2.567 PubMedCrossRefGoogle Scholar
  15. Kraft P, Evangelista C, Dacke M, Labhart T, Srinivasan MV (2011) Honeybee navigation: following routes using polarized-light cues. Phil Trans R Soc B 366:703–708PubMedCrossRefGoogle Scholar
  16. Lavenex P, Schenk F (1996) Integration of olfactory information in a spatial representation enabling accurate arm choice in the radial arm maze. Learn Mem 2:299–319. doi: 10.1101/lm.2.6.299 PubMedCrossRefGoogle Scholar
  17. Lerner A, Sabbah S, Erlick C, Shashar N (2011) Navigation by light polarization in clear and turbid waters. Phil Trans R Soc B 366:671–679. doi: 10.1098/rstb.2010.0189 PubMedCrossRefGoogle Scholar
  18. Lohmann KJ, Lohmann CMF, Endres CS (2008) The sensory ecology of ocean navigation. J Exp Biol 211:1719–1728. doi: 10.1242/jeb.015792 PubMedCrossRefGoogle Scholar
  19. Luschi P, Seppia CD, Crosio E (1997) Orientation during short-range feeding in the crab Dotilla wichmanni. J Comp Physiol A 181:461–468CrossRefGoogle Scholar
  20. March J, Chamizo VD, Mackintosh NJ (1992) Reciprocal overshadowing between intra-maze and extra-maze cues. Q J Exp Psychol B 45:49–63PubMedGoogle Scholar
  21. Mäthger LM, Barbosa A, Miner S, Hanlon RT (2006) Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Res 46:1746–1753PubMedCrossRefGoogle Scholar
  22. Messenger JB (1973) Learning in the cuttlefish, Sepia. Anim Behav 21:801–826CrossRefGoogle Scholar
  23. Nippak PM, Milgram MW (2005) An investigation of the relationship between response latency across several cognitive tasks in the beagle dog. Prog Neuropsychopharmacol Biol Psychiatry 29:371–377PubMedCrossRefGoogle Scholar
  24. Odling-Smee L, Braithwaite VA (2003) The role of learning in fish orientation. Fish Fish 4:235–246CrossRefGoogle Scholar
  25. Parkyn DC, Austin JD, Hawryshyn CW (2003) Acquisition of polarized-light orientation in salmonids under laboratory conditions. Anim Behav 65:893–904. doi: 10.1006/anbe.2003.2136 CrossRefGoogle Scholar
  26. Pearce JM, Ward-Robinson J, Good M, Fussell C, Aydin A (2001) Influence of a beacon on spatial learning based on the shape of the test environment. J Exp Psychol 27:329–344CrossRefGoogle Scholar
  27. Redhead ES, Roberts A, Good M, Pearce JM (1997) Interaction between piloting and beacon homing by rats in a swimming pool. J Exp Psychol 23:340–350CrossRefGoogle Scholar
  28. Rossier J, Haeberli C, Schenk F (2000) Auditory cues support place navigation in rats when associated with a visual cue. Behav Brain Res 117:209–214PubMedCrossRefGoogle Scholar
  29. Rozhok A (2008) Orientation and navigation in vertebrates. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  30. Sabbah S, Lerner A, Erlick C, Shashar N (2005) Under water polarization vision—a physical examination. In: Pandalai SG (ed) Recent research developments in experimental and theoretical biology. TRN Press, Kerala, pp 123–176Google Scholar
  31. Shashar N, Rutledge PS, Cronin TW (1996) Polarization vision in cuttlefish—a concealed communication channel? J Exp Biol 199:2077–2084PubMedGoogle Scholar
  32. Shashar N, Hanlon RT, deM Petz A (1998) Polarization vision helps detect transparent prey. Nature 393:222–223CrossRefGoogle Scholar
  33. Shashar N, Hagan R, Boal JG, Hanlon RT (2000) Cuttlefish use polarization sensitivity in predation on silvery fish. Vis Res 40:71–75. doi: 10.1016/S0042-6989(99)00158-3 PubMedCrossRefGoogle Scholar
  34. Shashar N, Johnsen S, Lerner A, Sabbah S, Chiao CC, Mäthger LM, Hanlon RT (2011) Underwater linear polarization: physical limitations to biological functions. Phil Trans R Soc B 366:649–654. doi: 10.1098/rstb.2010.0190 PubMedCrossRefGoogle Scholar
  35. Shettleworth SJ (2010) Getting around: spatial cognition. In: Shettleworth SJ (ed) Cognition, evolution, and behavior, 2nd edn. Oxford University Press, New York, pp 261–312Google Scholar
  36. Steck K, Hansson BS, Knaden M (2011) Desert ants benefit from combining visual and olfactory landmarks. J Exp Biol 214:1307–1312. doi: 10.1242/jeb.053579 PubMedCrossRefGoogle Scholar
  37. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lelia Cartron
    • 1
  • Anne-Sophie Darmaillacq
    • 1
  • Christelle Jozet-Alves
    • 1
  • Nadav Shashar
    • 2
  • Ludovic Dickel
    • 1
    Email author
  1. 1.Groupe Mémoire et Plasticité comportementaleUniversité de Caen Basse-NormandieCaen cedexFrance
  2. 2.Department of Life SciencesBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations