Skip to main content
Log in

City rats: insight from rat spatial behavior into human cognition in urban environments

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

The structure and shape of the urban environment influence our ability to find our way about in the city. Understanding how the physical properties of the environment affect spatial behavior and cognition is therefore a necessity. However, there are inherent difficulties in empirically studying complex and large-scale urban environments. These include the need to isolate the impact of specific urban features and to acquire data on the physical activity of individuals. In the present study, we attempted to overcome the above obstacles and examine the relation between urban environments and spatial cognition by testing the spatial behavior of rats. This idea originated from the resemblance in the operative brain functions and in the mechanisms and strategies employed by humans and other animals when acquiring spatial information and establishing an internal representation, as revealed in past studies. Accordingly, we tested rats in arenas that simulated a grid urban layout (e.g. Manhattan streets) and an irregular urban layout (e.g. Jerusalem streets). We found that in the grid layout, rat movement was more structured and extended over a greater area compared with their restricted movement in the irregular layout. These movement patterns recall those of humans in respective urban environments, illustrating that the structure and shape of the environment affect spatial behavior similarly in humans and rats. Overall, testing rats in environments that simulate facets of urban environments can provide new insights into human spatial cognition in urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander C (1965) A city is not a tree. Architectural Forum 122:58–62

    Google Scholar 

  • Arthur P, Passini R (1990) Wayfinding: people, signs, and architecture. McGraw-Hill Ryerson, Toronto

    Google Scholar 

  • Avni R, Zadicario P, Eilam D (2006) Exploration in a dark open field: a shift from directional to positional progression and a proposed model of acquiring spatial information. Behav Brain Res 171:313–323

    Article  PubMed  Google Scholar 

  • Avni R, Tzvaigrach Y, Eilam D (2008) Exploration and navigation in the blind mole rat (Spalax ehrenbergi): global calibration as a primer of spatial representation. J Exp Biol 211:2817–2826

    Article  PubMed  Google Scholar 

  • Balsam P, Gallistel C (2009) Temporal maps and informativeness in associative learning. Trends Neurosci 32:73–78

    Article  PubMed  CAS  Google Scholar 

  • Balsam P, Drew M, Gallistel C (2010) Time and associative learning. Comp Cogn Behav Rev 5:1–22

    Article  PubMed  Google Scholar 

  • Batty M (2008) The size, scale, and shape of cities. Science 319:769–771

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yehoshua D, Yaski O, Eilam D (2010) Spatial behavior: the impact of global and local geometry. Anim Cogn Published online 24 December 2010

  • Burgess N, O’Keefe J (2003) Neural representations in human spatial memory. Trends Cogn Sci 7:517–519

    Article  PubMed  Google Scholar 

  • Cheng K (1986) A purely geometric module in the rat’s spatial representation. Cognition 23:149–178

    Article  PubMed  CAS  Google Scholar 

  • Cheng K (2008) Whither geometry? Troubles of the geometric module. Trends Cogn Sci 12:355–361

    Article  PubMed  Google Scholar 

  • Cheng K, Newcombe N (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23

    Article  PubMed  Google Scholar 

  • Clark B, Hamilton D, Whishaw I (2006) Motor activity (exploration) and formation of home bases in mice (C57BL/6) influenced by visual and tactile cues: modification of movement distribution, distance, location, and speed. Physiol Behav 87:805–816

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Manka T, Mizumori S (2001) Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues. Behav Neurosci 115:1012–1028

    Article  PubMed  CAS  Google Scholar 

  • Darken R, Peterson B (2001) Spatial orientation, wayfinding, and representation. In: Stanney K (ed) Handbook of virtual environment technology. Lawrence Erlbaum Associates, New Jersey, pp 1–22

    Google Scholar 

  • Darken R, Sibert J (1996) Wayfinding strategies and behaviors in large virtual worlds. In: Conference on human factors in computing systems (CHI), Vancouver 1996. ACM, pp 142–149

  • Doeller C, Barry C, Burgess N (2010) Evidence for grid cells in a human memory network. Nature 463:657–663

    Article  PubMed  CAS  Google Scholar 

  • Drai D, Kafkafi N, Benjamini Y, Elmer G, Golani I (2001) Rats and mice share common ethologically relevant parameters of exploratory behavior. Behav Brain Res 125:133–140

    Article  PubMed  CAS  Google Scholar 

  • Eilam D, Golani I (1989) Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav Brain Res 34:199–211

    Article  PubMed  CAS  Google Scholar 

  • Eilam D, Dank M, Maurer R (2003) Voles scale locomotion to the size of the open-field by adjusting the distance between stops: a possible link to path integration. Behav Brain Res 141:73–81

    Article  PubMed  Google Scholar 

  • Etienne A, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199:201–209

    PubMed  CAS  Google Scholar 

  • Frank L, Engelke P (2001) The built environment and human activity patterns: exploring the impacts of urban form on public health. J Plann Lit 16:202–218

    Article  Google Scholar 

  • Frank L, Stone B (2000) Linking land use with household vehicle emissions in the central Puget Sound: methodological framework and findings. Transport Res D- Tr E 5:173–196

    Article  Google Scholar 

  • Golledge R (1999) Human wayfinding and cognitive maps. In: Golledge R (ed) Wayfinding behavior: cognitive mapping and other spatial processes. Johns Hopkins Press, Baltimore, pp 5–45

    Google Scholar 

  • Golledge R, Klatzky R, Loomis J (1996) Cognitive mapping and wayfinding by adults without vision. In: Portugali J (ed) The construction of cognitive maps. Kluwer Academic Publishers, Dordrecht, pp 215–246

    Chapter  Google Scholar 

  • Gouteux S, Thinus-Blanc C, Vauclair J (2001) Rhesus monkeys use geometric and non geometric during a reorientation task. J Exp Psychol Gen 130:505–519

    Article  PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser M, Moser E (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  PubMed  CAS  Google Scholar 

  • Haken H (2006) Information and self-organization: a macroscopic approach to complex systems, 3rd edn. Springer, Berlin

    Google Scholar 

  • Haken H, Portugali J (2003) The face of the city is its information. J Environ Psychol 23:385–408

    Article  Google Scholar 

  • Hartley T, Maguire E, Spiers H, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–888

    Article  PubMed  CAS  Google Scholar 

  • Hillier B (1996) Space is the machine. Cambridge University Press, Cambridge

    Google Scholar 

  • Hillier B (1999) The hidden geometry of deformed grids: or, why space syntax works, when it looks as though it shouldn’t. Environ Plann B Plann Des 26:169–191

    Article  Google Scholar 

  • Hillier B (2002) A theory of the city as object: or, how spatial laws mediate the social construction of urban space. Urban Des Int 7:153–179

    Article  Google Scholar 

  • Hillier B, Hanson J (1984) The social logic of space. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hillier B, Penn A, Hanson J, Grajewski T, Xu J (1993) Natural movement: or, configuration and attraction in urban pedestrian movement. Environ Plann B Plann Des 20:29–66

    Article  Google Scholar 

  • Hills T (2006) Animal foraging and the evolution of goal-directed cognition. Cogn Sci 30:3–41

    Article  PubMed  Google Scholar 

  • Hines D, Whishaw I (2005) Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Eur J Neurosci 22:2363–2375

    Article  PubMed  Google Scholar 

  • Hölscher C, Meilinger T, Vrachliotis G, Brösamle M, Knauff M (2006) Up the down staircase: wayfinding strategies in multi-level buildings. J Environ Psychol 26:284–299

    Article  Google Scholar 

  • Jacobs L (2003) The evolution of the cognitive map. Brain Behav Evol 62:128–139

    Article  PubMed  Google Scholar 

  • Jiang B (1999) SimPed: simulating pedestrian flows in a virtual urban environment. J Geogr Inform Decis Anal 3:21–30

    Google Scholar 

  • Latini-Corazzini L, Nesa M, Ceccaldi M, Guedj E, Thinus-Blanc C, Cauda F, Dagata F, Péruch P (2010) Route and survey processing of topographical memory during navigation. Psychol Res 74:545–559

    Article  PubMed  Google Scholar 

  • Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29:9771–9777

    Article  PubMed  CAS  Google Scholar 

  • Loomis J, Klatzky R, Golledge R, Cicinelli J, Pellegrino J, Fry P (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol Gen 122:73–91

    Article  PubMed  CAS  Google Scholar 

  • Lynch K (1960) The image of the city. MIT Press, Cambridge

    Google Scholar 

  • Matsumura N, Nishijo H, Tamura R, Eifuku S, Endo S, Ono T (1999) Spatial-and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. J Neurosci 19:2381–2393

    PubMed  CAS  Google Scholar 

  • Miller M, Eilam D (2011) Decision making at a crossroad: why to go straight ahead, retrace a path, or turn sideways? Anim Cogn 14:11–20

    Article  PubMed  Google Scholar 

  • Mittelstaedt M, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67:566–567

    Article  Google Scholar 

  • Montello D (1991) Spatial orientation and the angularity of urban routes: a field study. Environ Behav 23:47–69

    Article  Google Scholar 

  • Montello D, Sas C (2006) Human factors of wayfinding in navigation. In: Karwowski W (ed) International encyclopedia of ergonomics and human factors, 2nd edn, vol 3. CRC Press/Taylor & Francis, London, pp 2003–2008

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290

    Article  PubMed  Google Scholar 

  • Nemati F, Whishaw I (2007) The point of entry contributes to the organization of exploratory behavior of rats on an open field: an example of spontaneous episodic memory. Behav Brain Res 182:119–128

    Article  PubMed  Google Scholar 

  • O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109

    Article  PubMed  Google Scholar 

  • O’Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381:425–428

    Article  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar 

  • Omer I, Goldblatt R (2007) The implications of inter-visibility between landmarks on wayfinding performance: an investigation using a virtual urban environment. Comput Environ Urban Syst 31:520–534

    Article  Google Scholar 

  • Omer I, Goldblatt R, Or U (2005) Virtual city design based on urban image theory. Cartogr J 42:15–26

    Article  Google Scholar 

  • Penn A (2003) Space syntax and spatial cognition: or why the axial line? Environ Behav 35:30–65

    Article  Google Scholar 

  • Peponis J, Zimring C, Choi Y (1990) Finding the building in wayfinding. Environ Behav 22:555–590

    Article  Google Scholar 

  • Portugali J (2011) Complexity, cognition and the city. Springer, Heidelberg

  • Robertson R, Rolls E, Georges-Francois P, Panzeri S (1999) Head direction cells in the primate pre-subiculum. Hippocampus 9:206–219

    Article  PubMed  CAS  Google Scholar 

  • Rose-Redwood R (2008) Genealogies of the grid: revisiting Stanislawski’s search for the origin of the grid-pattern town. Geogr Rev 98:42–58

    Article  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Sys Tech J 27:379–423, 623–656

    Google Scholar 

  • Southworth M, Owens P (1993) The evolving metropolis: studies of community, neighborhood, and street form at the urban edge. J Am Plann Assoc 59:271–287

    Article  Google Scholar 

  • Taube J, Muller R, Ranck J Jr (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal Neurosci 10:420–435

    CAS  Google Scholar 

  • Tchernichovski O, Benjamini Y, Golani I (1996) Constraints and the emergence of ‘free’ exploratory behavior in rat ontogeny. Behaviour 133:519–539

    Article  Google Scholar 

  • Thinus-Blanc C (1996) Animal spatial cognition: behavioural and neural approach. World Scientific, London

    Google Scholar 

  • Tolman E (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Article  PubMed  CAS  Google Scholar 

  • Tversky B (1992) Distortions in cognitive maps. Geoforum 23:131–138

    Article  Google Scholar 

  • Twyman A, Newcombe N (2010) Five reasons to doubt the existence of a geometric module. Cogn Sci 34:1315–1356

    Article  PubMed  Google Scholar 

  • Ungar S (2000) Cognitive mapping without visual experience. In: Kitchin R, Freundschuh S (eds) Cognitive mapping: past, present and future. Routledge, London, pp 221–248

    Google Scholar 

  • Wang R, Spelke E (2000) Updating egocentric representations in human navigation. Cognition 77:215–250

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Spelke E (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376–382

    Article  PubMed  Google Scholar 

  • Weisman J (1981) Evaluating architectural legibility: wayfinding in the built environment. Environ Behav 13:189–204

    Article  Google Scholar 

  • Willis A, Gjersoe N, Havard C, Kerridge J, Kukla R (2004) Human movement behaviour in urban spaces: implications for the design and modelling of effective pedestrian environments. Environ Plann B Plann Des 31:805–828

    Article  Google Scholar 

  • Yaski O, Portugali J, Eilam D (2009) The dynamic process of cognitive mapping in the absence of visual cues: human data compared with animal studies. J Exp Biol 212:2619–2626

    Article  PubMed  Google Scholar 

  • Zadicario P, Avni R, Zadicario E, Eilam D (2005) ‘Looping’ - an exploration mechanism in a dark open field. Behav Brain Res 159:27–36

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Naomi Paz for editing the manuscript. This study was supported by the Israel Science Foundation grant 177/09 to DE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eilam.

Additional information

David Eilam is a Visiting Professor at the Department of OTANES, University of South Africa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaski, O., Portugali, J. & Eilam, D. City rats: insight from rat spatial behavior into human cognition in urban environments. Anim Cogn 14, 655–663 (2011). https://doi.org/10.1007/s10071-011-0400-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-011-0400-y

Keywords

Navigation