Skip to main content
Log in

Features enhance the encoding of geometry

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Successful navigation within an environment requires that the traveler establish the correct heading—a process referred to as orienting. Many studies have now shown that humans and non-human animals can use the geometric properties of an enclosure to orient. In the present study, two groups of Clark’s nutcrackers (Nucifraga columbiana) were trained, in a reference memory task, to find food hidden in one of four containers arranged to form a rectangular array. One group had unique objects placed next to each of the containers, whereas the second group had identical objects placed next to each of the containers. Here, I show for the first time that for the Clark’s nutcracker, the distinctive properties of these objects enhanced the encoding of the array’s geometry compared to the learning of geometric properties from an array of identical objects, which remained at chance after substantial amounts of training. Subsequent transformation tests showed that an object not associated with reward, but sharing the same geometric properties as the correct object, may have had inhibitory qualities. Furthermore, by systematically removing objects from the array, I show that although nutcrackers encoded the geometry of the array, they did not encode a complete featural representation of the objects within the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cheng K (1986) A purely geometric module in the rat’s spatial representation. Cognition 23:149–178

    Article  CAS  PubMed  Google Scholar 

  • Cheng K (1988) Some psychophysics of the pigeons use of landmarks. J Comp Physiol A 162:815–826

    Article  CAS  PubMed  Google Scholar 

  • Cheng K (1989) The vector sum model of pigeon landmark use. J Exp Psychol Anim Behav Proc 15:366–375

    Article  Google Scholar 

  • Cheng K (1994) The determination of direction in landmark-based spatial search in pigeons—A further test of the vector sum model. Amin Learn Behav 22:291–301

    Google Scholar 

  • Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonom Bull Rev 12:1–23

    Google Scholar 

  • Cheng K, Spetch ML, Kelly DM, Bingman VP (2006) Small-scale spatial cognition in pigeons. Behav Process 72:115–127

    Article  Google Scholar 

  • Cheung A, Stürzl W, Zeil J, Cheng K (2008) The information content of panoramic images II: view-based navigation in nonrectangular experimental arenas. J Exp Psychol Anim Behav Proc 34:15–30

    Article  Google Scholar 

  • Chiandetti C, Vallortigara G (2008) Is there an innate geometric module? Effects of experience with angular geometric cues on spatial reorientation based on the shape of the environment. Anim Cogn 11:139–146

    Article  PubMed  Google Scholar 

  • Collett TS, Cartwright BA, Smith BA (1986) Landmark learning and visuo-spatial memories in gerbils. J Comp Physiol A 158:851

    Article  Google Scholar 

  • Della Chiesa A, Speranza M, Tommasi L, Vallortigara G (2006a) Spatial cognition based on geometry and landmarks in the domestic chick (Gallus gallus). Behav Brain Res 175:119–127

    Article  PubMed  Google Scholar 

  • Della Chiesa A, Pecchia T, Tommasi L, Vallortigara G (2006b) Multiple landmarks, the encoding of environmental geometry and the spatial logistics of a dual brain. Anim Cogn 9:281–293

    Article  PubMed  Google Scholar 

  • Doeller CF, Burgess N (2008) Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proc Natl Sci USA 105:5909–5914

    Article  CAS  Google Scholar 

  • Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Sci USA 105:5915–5920

    Article  CAS  Google Scholar 

  • Esber GR, McGregor A, Good MA, Hayward A, Pearce JM (2005) Transfer of spatial behaviour controlled by a landmark array with a distinctive shape. Q J Exp Psychol 58B:69–91

    Google Scholar 

  • Gallistel CR (1990) The organization of learning. MIT Press, Cambridge

    Google Scholar 

  • Garrad-Cole F, Lew AR, Bremner JG, Whitaker CJ (2001) Use of cue configuration geometry for spatial orientation in human infants (Homo sapiens). J Comp Psychol 115:317–320

    Article  CAS  PubMed  Google Scholar 

  • Gibson BM, Leichtman MD, Kung DA, Simpson MJ (2007a) Use of landmark features and geometry by children and adults during a two-dimensional search task. Learn Motiv 38:89–102

    Article  Google Scholar 

  • Gibson BM, Wilks TJ, Kelly DM (2007b) Rats (Rattus norvegicus) encode the shape of an array of discrete objects. J Comp Psychol 121:130–144

    Article  PubMed  Google Scholar 

  • Gould-Beierle KL, Kamil AC (1998) Use of landmarks in three species of food-storing corvids. Ethology 104:361–378

    Article  Google Scholar 

  • Gouteux S, Spelke ES (2001) Children’s use of geometry and landmarks to reorient in an open space. Cognition 81:119–148

    Article  CAS  PubMed  Google Scholar 

  • Gouteux S, Thinus-Blanc C, Vauclair J (2001) Rhesus monkeys use geometric and non-geometric information during a reorientation task. J Exp Psychol Gen 130:505–519

    Article  CAS  PubMed  Google Scholar 

  • Graham M, Good MA, McGregor A, Pearce JM (2006) Spatial learning based on the shape of the environment is influenced by the properties of the objects forming the shape. J Exp Psychol Anim Behav Proc 32:44–59

    Article  Google Scholar 

  • Hermer L, Spelke ES (1994) A geometric process for spatial reorientation in young children. Nature 370:57–59

    Article  CAS  PubMed  Google Scholar 

  • Hermer L, Spelke ES (1996) Modularity and development: the case of spatial reorientation. Cognition 61:195–232

    Article  CAS  PubMed  Google Scholar 

  • Jones JE, Antoniadis E, Shettleworth SJ, Kamil AC (2002) A comparative study of geometric rule learning by nutcrackers (Nucifraga Columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula). J Comp Psychol 116:350–356

    Article  PubMed  Google Scholar 

  • Kamil AC, Cheng K (2001) Way-finding and landmarks: the multiple-bearings hypothesis. J Exp Biol 2043:103–113

    Google Scholar 

  • Kamil AC, Jones JE (1997) The seed-storing corvid Clark’s nutcracker learns geometric relationship among landmarks. Nature 390:276–279

    Article  CAS  Google Scholar 

  • Kamil AC, Jones JE (2000) Geometric rule learning by Clark’s nutcrackers (Nucifraga columbiana). J Exp Psychol Anim Behav Proc 26:439–453

    Article  CAS  Google Scholar 

  • Kelly DM, Spetch ML (2001) Pigeons encode relative geometry. J Exp Psychol Anim Behav Proc 27:417–422

    Article  CAS  Google Scholar 

  • Kelly DM, Spetch ML (2004a) Reorientation in a two-dimensional environment: I. Do adults encode the featural and geometric properties of a two-dimensional schematic of a room? J Comp Psychol 118:82–94

    Article  PubMed  Google Scholar 

  • Kelly DM, Spetch ML (2004b) Reorientation in a two-dimensional environment: II. Do pigeons encode the featural and geometric properties of a two-dimensional schematic of a room? J Comp Psychol 118:384–395

    Article  Google Scholar 

  • Kelly DM, Spetch ML, Heth CD (1998) Pigeons’ (Columba livia) encoding of geometric and featural properties of a spatial environment. J Comp Psychol 112:259–269

    Article  Google Scholar 

  • Kelly DM, Kippenbrock S, Templeton J, Kamil AC (2008) Use of a geometric rule or absolute vectors: landmark use by Clark’s nutcrackers (Nucifraga columbiana). Brain Res Bull 76:293–299

    Article  CAS  PubMed  Google Scholar 

  • Kelly DM, Kamil AC, Cheng K (2009) Landmark use by Clark’s nutcrackers (Nucifraga Columbiana): influence of disorientation and cue rotation on distance and direction estimates. Anim Cogn doi:10.1007/s10071-009-0256-6

  • Lee SA, Spelke ES (2008) Children’s use of geometry for reorientation. Dev Sci 11:743–749

    Article  PubMed  Google Scholar 

  • MacDonald SE, Spetch ML, Kelly DM, Cheng K (2004) Strategies in landmark use by children, adults, and marmoset monkeys. Learn Motiv 35:322–347

    Article  Google Scholar 

  • McGregor A, Good MA, Pearce JM (2004) Absence of an interaction between navigational strategies based on local and distal landmarks. J Exp Psychol Anim Behav Proc 30:34–44

    Article  Google Scholar 

  • Miller NY (2009) Modeling the effects of enclosure size on geometry learning. Behav Process 80:306–313

    Article  Google Scholar 

  • Miller NY, Shettleworth SJ (2007) Learning about environmental geometry: an associative model. J Exp Psychol Anim Behav Proc 33:191–212

    Article  Google Scholar 

  • Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  CAS  PubMed  Google Scholar 

  • Pearce JM, Good MA, Jones PM, McGregor A (2004) Transfer of spatial behavior between different environments: implications for theories of spatial learning and for the role of the hippocampus in spatial learning. J Exp Psychol Anim Behav Proc 30:135–147

    Article  Google Scholar 

  • Skov-Rackette SI, Shettleworth SJ (2005) What do rats learn about the geometry of object arrays? Tests with exploratory behavior. J Exp Psychol Anim Behav Proc 31:142–154

    Article  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial orientation in a simple mind: Encoding of geometric and non-geometric properties of a spatial environment by fish. Cognition 85:B51–B59

    Article  PubMed  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish (Xenotoca eiseni) views it: Conjoining geometric and non-geometric information for spatial reorientation. J Exp Psychol Anim Behav Proc 29:199–210

    Article  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2005) Animals’ use of landmarks and metric information to reorient: effects of the size of the experimental space. Cognition 97:121–133

    Article  PubMed  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2007) How fish do geometry in large and in small spaces. Anim Cogn 10:47–54

    Article  PubMed  Google Scholar 

  • Spetch ML, Kelly DM (2006) Comparative spatial cognition: processes in landmark and surface-based place finding. In: Wasserman E, Zentall T (eds) Comparative cognition: experimental exploration of animal intelligence. Oxford University Press, Oxford, pp 210–228

    Google Scholar 

  • Spetch ML, MacDonald SE, Cheng K, Linkenhoker BA, Kelly DM, Doerkson SR (1997) Use of landmark configuration in pigeons and humans: II. Generality across search tasks. J Comp Psychol 111:14–24

    Article  Google Scholar 

  • Sturz BR, Kelly DM (2009) Encoding of relative enclosure size in a dynamic three-dimensional virtual environment by humans. Behav Process 82:223–227

    Article  Google Scholar 

  • Stürzl W, Cheung A, Zeil J, Cheng K (2008) The information content of panoramic images I: the rotational errors and the similarity of views in rectangular experimental arenas. J Exp Psychol Anim Behav Proc 34:1–14

    Article  Google Scholar 

  • Thalau P, Holtkamp-Rotzler E, Fleissner G, Wiltschko W (2007) Homing pigeons (Columba livia f. domestica) can use magnetic cues for locating food. Naturwissenschaften 94:813–819

    Article  CAS  PubMed  Google Scholar 

  • Tommasi L, Polli C (2004) Representation of two geometric features of the environment in the domestic chick (Gallus gallus). Anim Cog 7:53–59

    Article  Google Scholar 

  • Tommasi L, Vallortigara G (2001) Encoding geometric and landmark information in the left and right hemispheres of the avian brain. Behav Neurosci 115:602–613

    Article  CAS  PubMed  Google Scholar 

  • Tommasi L, Vallortigara G (2004) Hemispheric processing of landmark and geometric information in male and female domestic chicks (Gallus gallus). Behav Brain Res 115:85–96

    Article  Google Scholar 

  • Vallortigara G, Zanforlin M, Pasti G (1990) Geometric modules in animals’ spatial representations: a test with chicks (Gallus gallus domesticus). J Comp Psychol 104:248–254

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko W, Freire R, Munro U, Ritz T, Rogers L, Thalau P, Wiltschko R (2007) The magnetic compass of domestic chickens, Gallus gallus. J Exp Biol 210:2300–2310

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Natural Sciences and Engineering Research Council of Canada postdoctoral fellowship and Discovery Grant to Debbie M. Kelly and a National Institute of Mental Health MH61810 to Alan C. Kamil, who provided additional funding to Debbie M. Kelly. I wish to thank Ken Cheng and three anonymous reviewers for providing helpful suggestions on a previous version of this manuscript, Noam Miller for helpful discussions, as well as Vincent Harms-Fraiser, Erica Robak, Tim Suhr and Dan Riskowski for their assistance in conducting the experiments. All experiments reported in this manuscript complied with the current laws of the United States and Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie M. Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, D.M. Features enhance the encoding of geometry. Anim Cogn 13, 453–462 (2010). https://doi.org/10.1007/s10071-009-0296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-009-0296-y

Keywords

Navigation