Do fish count? Spontaneous discrimination of quantity in female mosquitofish

Abstract

The spontaneous tendency to join the largest social group was used to investigate quantity discrimination in fish. Fish discriminated between shoals that differed by one element when the paired numbers were 1vs2, 2vs3 and 3vs4, but not when 4vs5 or larger. Using large numerosities (>4), the ability to discriminate between two numbers improved as the numerical distance between them increased and a significant discrimination was found only with ratios of 1:2 or smaller (4vs8, 8vs16 and 4vs10). Experiments to control for non-numerical variables evidenced the role played by the total area of stimuli with both large and small numerosities; the total quantity of movement of the fish within a shoal appeared also important but only when large numerosities were involved. Even though the pattern of discrimination exhibited by female mosquitofish is not fully consistent with any of the existing models of quantity representation, our results seem to suggest two distinct mechanisms in fish, one used to compare small numbers of objects and one used when larger numerosities are involved.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agrillo C, Dadda M (2007) Discrimination of the larger shoal in the poeciliid fish Girardinus falcatus. Ethol Ecol Evol 19(2):145–157

    Article  Google Scholar 

  2. Agrillo C, Dadda M, Bisazza A (2007) Quantity discrimination in female mosquitofish. Anim Cogn 10:63–70

    PubMed  Article  Google Scholar 

  3. Barber I, Downey LC, Braithwaite VA (1998) Parasitism, oddity and the mechanism of shoal choice. J Fish Biol 53:1365–1368

    Article  Google Scholar 

  4. Barth H, Kanwisher N, Spelke E (2003) Construction of large number representations in adults. Cognition 86:201–221

    PubMed  Article  Google Scholar 

  5. Bisazza A, Marin G (1995) Sexual selection and sexual size dimorphism in the eastern mosquitofish Gambusia holbrooki (Pisces: Poeciliidae). Ethol Ecol Evol 7:169–183

    Article  Google Scholar 

  6. Cantlon JF, Brannon EM (2006) The effect of heterogeneity on numerical ordering in rhesus monkeys. Infancy 9(2):173–189

    Article  Google Scholar 

  7. Clearfield MW, Mix KS (1999) Number versus contour length in infants’ discrimination of small visual sets. Psychol Sci 10:408–411

    Article  Google Scholar 

  8. Cordes S, Gelman R, Gallistel CR, Whalen J (2001) Variability signatures distinguish verbal from nonverbal counting for both small and large numbers. Psychon Bull Rev 8:698–707

    PubMed  CAS  Google Scholar 

  9. Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representations of numbers in the animal and human brain. Trends Neurosci 21:355–361

    PubMed  Article  CAS  Google Scholar 

  10. Durgin FH (1995) Texture density adaptation and the perceived numerosity and distribution of texture. J Exp Psychol Hum Percept Perform 21:149–169

    Article  Google Scholar 

  11. Feigenson L, Carey S (2005) On the limits of infants’ quantification of small object arrays. Cognition 97:295–313

    PubMed  Article  Google Scholar 

  12. Feigenson L, Carey S, Hauser MD (2002a) The representations underlying infants’ choice of more: object files vs. analog magnitudes. Psychol Sci 13:150–156

    PubMed  Article  Google Scholar 

  13. Feigenson L, Carey S, Spelke E (2002b) Infants’ discrimination of number vs. continuous extent. Cognit Psychol 44:33–66

    PubMed  Article  Google Scholar 

  14. Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. Trends Cogn Sci 7:307–314

    Article  Google Scholar 

  15. Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from reals to integers. Trends Cogn Sci 4:59–65

    PubMed  Article  Google Scholar 

  16. Gentner TQ (2004) Neural systems for individual song recognition in adult birds. Ann N Y Acad Sci 1016(1):282–302

    PubMed  Article  CAS  Google Scholar 

  17. Hager MC, Helfman GS (1991) Safety in numbers: shoal size choice by minnows under predatory threat. Behav Ecol Sociobiol 29:271–276

    Article  Google Scholar 

  18. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311

    PubMed  Article  CAS  Google Scholar 

  19. Hauser MD, Spelke ES (2004) Evolutionary and developmental foundations of human knowledge: a case study of mathematics. In: Gazzaniga M (ed) The cognitive neurosciences, vol 3. MIT Press, Cambridge

    Google Scholar 

  20. Hauser MD, Carey S, Hauser LB (2000) Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc R Soc Lond B 267:829–833

    Article  CAS  Google Scholar 

  21. Hauser MD, Tsao F, Garcia P, Spelke ES (2003) Evolutionary foundations of number: spontaneous representations of numerical magnitudes by cotton-top tamarins. Proc R Soc Lond B 270:1441–1446

    Article  Google Scholar 

  22. Haxby J (2002) Human neural systems for face recognition and social communication. Biol Psychiatry 51(1):59–67

    PubMed  Article  Google Scholar 

  23. Hoare DJ, Couzin ID, Godin JG, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67:155–164

    Article  Google Scholar 

  24. Jordan KE, Brannon EM (2006) Weber’s Law influences numerical representations in rhesus macaques (Macaca mulatta). Anim Cogn 9(3):159–172

    PubMed  Article  Google Scholar 

  25. Krause J, Godin JGJ (1995) Predator preferences for attacking particular prey group sizes: consequences for predator hunting success and predation risk. Anim Behav 50:465–473

    Article  Google Scholar 

  26. Lewis K, Jaffe S, Brannon EM (2005) Analog number representations in mongoose lemurs (Eulemur mongoz): evidence from a search task. Anim Cogn 8(4):247–252

    PubMed  Article  Google Scholar 

  27. Lipton JS, Spelke ES (2003) Origins of number sense: large number discrimination in human infants. Psychol Sci 14:396–401

    PubMed  Article  Google Scholar 

  28. Meck WH, Church RM (1983) A mode control model of counting and timing processes. J Exp Psychol Anim Behav Proc 9:320–334

    Article  CAS  Google Scholar 

  29. Peichel CL (2004) Social behavior: how do fish find their shoal mate? Curr Biol 14(13):R503–R504

    PubMed  Article  CAS  Google Scholar 

  30. Pepperberg I (2006) Grey parrot numerical competence: a review. Anim Cogn 9:377–391

    PubMed  Article  Google Scholar 

  31. Pritchard VL, Lawrence J, Butlin RK, Krause J (2001) Shoal size in zebrafish, Danio rerio: the influence of shoal size and activity. Anim Behav 62:1085–1088

    Article  Google Scholar 

  32. Pylyshyn ZW, Storm RW (1988) Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat Vis 3(3):179–197

    PubMed  Article  CAS  Google Scholar 

  33. Reynolds WW, Casterlin ME (1979) Effect of temperature on locomotor activity in the goldfish (Carassius auratus) and the bluegill (Lepomis macrochirus): presence of an ‘activity well’ in the region of the final preferendum. Hydrobiologia 65(1):3–5

    Google Scholar 

  34. Rohlf FJ (2004) TPSDIG, Version 1.40. Dept. of Ecology and Evolution, State Univ. of New York, Stony Brook

  35. Sokal RR, Rohlf FJ (1995) Biometry. Freeman and Company, New York

    Google Scholar 

  36. Stevens JR, Wood JN, Hauser MD (2007) When quantity trumps number: discrimination experiments in cotton-top tamarins (Saguinus oedipus) and common marmosets (Callithrix jacchus). Anim Cogn 10:429–437

    PubMed  Article  Google Scholar 

  37. Trick LM, Pylyshyn ZW (1994) Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychol Rev 101:80–102

    PubMed  Article  CAS  Google Scholar 

  38. Uller C, Carey S, Huntley-Fenner G, Klatt L (1999) What representations might underlie infant numerical knowledge. Cogn Dev 14:1–36

    Article  Google Scholar 

  39. Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in a species of basal vertebrate. Anim Cogn 6:105–112

    PubMed  Google Scholar 

  40. Vos PG, Van Oeffelen MP, Tibosch HJ, Allik J (1988) Area-numerosity interactions. Psychol Res 50:148–150

    PubMed  Article  CAS  Google Scholar 

  41. Whalen J, Gallistel CR, Gelman R (1999) Nonverbal counting in humans: the psychophysics of number representation. Psychol Sci 10:130–137

    Article  Google Scholar 

  42. Wood JN, Spelke ES (2005) Infants’ enumeration of actions: numerical discrimination and its signature limits. Dev Sci 8(2):173–181

    PubMed  Article  Google Scholar 

  43. Xu F (2003) Numerosity discrimination in infants: evidence for two systems of representations. Cognition 89(1):B15–B25

    PubMed  Article  Google Scholar 

  44. Xu F, Arriaga RI (2007) Number discrimination in 10-month-old infants. Br J Dev Psychol 25(1):103–108

    Article  Google Scholar 

  45. Xu F, Spelke ES (2000) Large number discrimination in 6-month-old infants. Cognition 74:B1–B11

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brian Butterworth, Elizabeth Spelke, Marco Zorzi for useful comments, Jonathan Daisley and Peter Kramer for their suggestions and Maria Anna Posa for her help conducting the experiments. This study was supported by research grants of the University of Padova to AB. The reported experiments comply with all laws of the country (Italy) in which they were performed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Agrillo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agrillo, C., Dadda, M., Serena, G. et al. Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Anim Cogn 11, 495–503 (2008). https://doi.org/10.1007/s10071-008-0140-9

Download citation

Keywords

  • Fish cognition
  • Quantity discrimination
  • Continuous variable
  • Number