Skip to main content
Log in

Animal logics: Decisions in the absence of human language

  • Review
  • Published:
Animal Cognition Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allen C (2006) Transitive inference in animals: reasoning or conditioned associations? In: Hurley S, Nudds M (eds) Rational animals? Oxford University Press, Oxford, pp 175–185

    Google Scholar 

  • Bekoff M, Allen C, Burghardt GM (2002) The cognitive animal: empirical and theoretical perspectives on animal cognition. MIT Press, Cambridge, MA

    Google Scholar 

  • Bermudez JL (2006) Animal reasoning and proto-logic. In: Hurley S, Nudds M (eds) Rational animals? Oxford University Press, Oxford, pp 127–137

    Google Scholar 

  • Bond AB, Kamil AC, Balda RP (2003) Social complexity and transitive inference in corvids. Anim Behav 65:479–487

    Article  Google Scholar 

  • Bower GH, Hilgard ER (1981) Theories of learning. Prentice-Hall, NJ

    Google Scholar 

  • Braine MDS, O'Brien DP (1998) Mental logic. Erlbaum, Hove

    Google Scholar 

  • Brunswik E (1955) “Ratiomorphic” models of perception and thinking. Acta Psychologica 11:108–109

    Article  Google Scholar 

  • Bryant PE, Trabasso T (1971) Transitive inference and memory in young children. Nature 232:456–458

    Article  PubMed  CAS  Google Scholar 

  • Bshary R, Wickler W, Fricke H (2002) Fish cognition: a primate's eye view. Anim Cogn 5:1–13

    PubMed  Google Scholar 

  • Bugnyar T, Heinrich B (2006) Pilfering ravens, Corvus corax, adjust their behaviour to social context and identity of competitors. Anim Cogn 9, DOI 10.1007/s10071-006-0035-6

  • Butterworth B (1998) Figure heads. Nature 391:856

    Article  CAS  Google Scholar 

  • Byrne RW, Whiten A (1988) Machiavellian intelligence. Social expertise and the evolution of the intellect in monkeys, apes, and humans. Clarendon, Oxford

    Google Scholar 

  • Call J (2006a) Inferences by exclusion in the great apes: the effect of age and species. Anim Cogn 9, DOI 10.1007/s10071-006-0037-4

  • Call J (2006b) Descartes' two errors: reason and reflection in the great apes. In: Hurley S, Nudds M (eds) Rational animals? Oxford University Press, Oxford, pp 219–234

    Google Scholar 

  • Cheng PW, Holyoak KJ (1985) Pragmatic reasoning schemas. Cogn Psych 17:391–416

    Article  CAS  Google Scholar 

  • D’Amato MR, Salmon DP, Loukas E, Tomie A (1985) Symmetry and transitivity of conditioned relations in monkeys (Cebus apella) and pigeons (Columba livia). J Exp Anal Behav 44:35–47

    Article  PubMed  Google Scholar 

  • Davis H, Pérusse R (1988) Numerical competence in animals: definitional issues, current evidence, and a new research agenda. Behav Brain Sci 11:561–615

    Article  Google Scholar 

  • Dehaene S (1997) The number sense. Oxford University Press, Oxford

    Google Scholar 

  • Dehaene S (2002) Single-neuron arithmetic. Science 297:1652–1653

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284:970–974

    Article  PubMed  CAS  Google Scholar 

  • Dugdale N, Lowe CF (1990) Naming and stimulus equivalence. In: Blackman DE, Lejeune H (eds) Behavior analysis in theory and practice: contributions and controversies. Lawrence Erlbaum, Hillsdale, NJ, pp 115–138

    Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907

    Article  PubMed  CAS  Google Scholar 

  • Epstein R, Kirshnit CE, Lanza RP (1984) ‘Insight’ in the pigeon: antecedents and determinants of an intelligent performance. Nature 308:61–62

    Article  PubMed  CAS  Google Scholar 

  • Gallistel CR (1990) The organization of learning. MIT, Cambridge, MA

    Google Scholar 

  • Gelman R, Gallistel CR (2004) Language and the origin of numerical concepts. Science 306:441–443

    Article  PubMed  CAS  Google Scholar 

  • Gentner TG, Fenn KM, Margoliash D, Nusbaum HC (2006) Recursive syntactic pattern learning by songbirds. Nature 440:1204–1207

    Article  PubMed  CAS  Google Scholar 

  • Gigerenzer G, Todd PM, Group AR (1999) Simple heuristics that make us smart. Oxford University Press, New York

    Google Scholar 

  • Gillan DJ (1981) Reasoning in the chimpanzee. II. Transitive inference. J Exp Psychol: Anim Behav Proc 7:150–164

    Article  Google Scholar 

  • Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930-3

    Article  PubMed  Google Scholar 

  • Goel V, Buchel C, Frith C, Dolan R (2000) Dissociation of mechanisms underlying syllogistic reasoning. NeuroImage 12:504–514

    Article  PubMed  CAS  Google Scholar 

  • Hauser MD (2000) Wild minds: what animals really think. Holt, New York

    Google Scholar 

  • Hauser MD, Chomsky N, Fitch WT (2002) The faculty of language: what is it, who has it, and how did it evolve? Science 298:1569–1579

    Article  PubMed  CAS  Google Scholar 

  • Heinrich B, Bugnyar T (2005) Testing problem solving in ravens: string-pulling to reach food. Ethology 111:962–976

    Article  Google Scholar 

  • Heyes CM, Huber L (2000) The evolution of cognition. MIT Press, Cambridge, MA

    Google Scholar 

  • Hillix WA, Rumbaugh DM (2004) Animal bodies, human minds: ape, dolphin, and parrot language skills. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Houdé O, Tzourio-Mazoyer N (2003) Neural foundations of logical and mathematical cognition. Nat Rev Neurosci 4:507–514

    Article  PubMed  CAS  Google Scholar 

  • Huber L, Gajdon T (2006) Technical intelligence in animals: the kea model. Anim Cogn 9, DOI 10.1007/s10071-006-0033-8

  • Huber L, Rechberger S, Taborsky M (2001) Social learning affects object exploration and manipulation in keas, Nestor notabilis. Anim Behav 62:945–954

    Article  Google Scholar 

  • Hunt GR, Rutledge RB, Gray RD (2006) The right tool for the job: What strategy do wild New Caledonian crows use? Anim Cogn 9, DOI 10.1007/s10071-006-0047-2

  • Hurley S (2006) Making sense of animals. In: Hurley S, Nudds M (eds) Rational animals? Oxford University Press, Oxford, pp 139–171

    Google Scholar 

  • Hurley S, Nudds M (2006) Rational animals? Oxford University Press, Oxford

    Google Scholar 

  • Hutchinson JMC, Gigerenzer G (2005) Simple heuristics and rules of thumb: where psychologists and behavioural biologists might meet. Behav Proc 69:97–124

    Article  Google Scholar 

  • Iwaniuk AN, Dean KM, Nelson JE (2005) Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates. Brain Behav Evol 65:40–59

    Article  PubMed  Google Scholar 

  • Johnson-Laird PN (2001) Mental models and deduction. Trends Cogn Sci 5:434–442

    Article  PubMed  Google Scholar 

  • Kacelnik A (2006) Meanings of rationality. In: Hurley S, Nudds M (eds) Rational animals? Oxford University Press, Oxford, pp 87–106

    Google Scholar 

  • Koehler O (1950) The ability of birds to “count”. Bull Anim Behav 9:41–45

    Google Scholar 

  • Köhler W (1921) The mentality of apes. Methuen, London

    Google Scholar 

  • Kotrschal K, Staaden MJ, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fisheries 8:373–408

    Article  Google Scholar 

  • Kuno H, Kitadate T, Iwamoto T (1994) Formation of transitivity in conditioned matching-to-sample by pigeons. J Exp Anal Behav 62:399–408

    Article  PubMed  Google Scholar 

  • Lazareva OF, Wasserman EA (2006) Effect of stimulus orderability and reinforcement history on transitive responding in pigeons. Behav Proc 72:161–172

    Article  Google Scholar 

  • Lea SEG, Goto, K, Osthaus B, Ryan KME (2006) The logic of the stimulus. Anim Cogn 9, DOI 10.1007/s10071-006-0038-3

  • Lorenz K (1977) Behind the mirror. A search for a natural history of human knowledge. Methuen & Co. Ltd, London

    Google Scholar 

  • Marino L (2002) Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav Evol 59:21–32

    Article  PubMed  Google Scholar 

  • McGonigle BO, Chalmers M (1977) Are monkeys logical? Nature 267:694–696

    Article  PubMed  CAS  Google Scholar 

  • Needham A, Baillargeon R (1993) Intuitions about support in 4.5-month-old infants. Cognition 47:121–148

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Freedman DJ, Miller EK (2002) Representation of the quantity of visual items in the primate prefrontal cortex. Science 297:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • Paz-Y-Miño GC, Bond AB, Kamil AC, Balda RP (2004) Pinyon jays use transitive inference to predict social dominance. Nature 430:778–781

    Article  CAS  Google Scholar 

  • Pepperberg IM (2002) Cognitive and communicative abilities of Grey parrots. In: Bekoff M, Allen C, Burghardt GM (eds) The cognitive animal: empirical and theoretical perspectives on animal cognition. MIT Press, Cambridge, MA, pp 247–253

    Google Scholar 

  • Pepperberg IM (2006) Grey parrot numerical competence: a review. Anim Cogn 9, DOI 10.1007/s10071-006-0034-7

  • Piaget J (1937) La construction du réel chez l'enfant (The construction of the real in the child). Delachaux and Niestle, Oxford

    Google Scholar 

  • Piaget J (1970) Genetic epistemology. Columbia University Press, New York

    Google Scholar 

  • Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. PNAS 99:4436–4441

    Article  PubMed  CAS  Google Scholar 

  • Reader SM, Laland KN (2003) Animal innovation. Oxford University Press, Oxford

    Google Scholar 

  • Riedl R (1984) Biology of knowledge. The evolutionary basis of reason. Wiley, New York

    Google Scholar 

  • Riedl R, Huber L, Ackermann G (1991) Rational versus ratiomorphic strategies in human cognition. Evol Cogn 1:71–88

    Google Scholar 

  • Schusterman RJ, Kastak D (1993) A California sea lion (Zalophus californianus) is capable of forming equivalence relations. Psychol Rec 43:823–839

    Google Scholar 

  • Schusterman RJ, Kastak D (1998) Functional equivalence in a California sea lion: relevance to animal social and communicative interactions. Anim Behav 55:1087–1095

    Article  PubMed  Google Scholar 

  • Seyfarth RM, Cheney DL (2002) The structure of social knowledge in monkeys. In: Bekoff M, Allen C, Burghardt GM (eds) The cognitive animal: empirical and theoretical perspectives on animal cognition. MIT Press, Cambridge, MA, pp 379–384

    Google Scholar 

  • Sidman M (1990) Equivalence relations: where do they come from? In: Blackman DE, Lejeune H (eds) Behavior analysis in theory and practice: contributions and controversies. Lawrence Erlbaum, Hillsdale NJ

    Google Scholar 

  • Sidman M, Rauzin R, Lazer R, Cunningham S, Taiby W, Carrigan P (1982) A search for symmetry in the conditional discriminations of rhesus monkeys, baboons and children. J Exp Anal Behav 37:23–44

    Article  PubMed  CAS  Google Scholar 

  • Simon H (1982) Models of bounded rationality, vol 2. MIT Press, Cambridge, MA

    Google Scholar 

  • Spelke ES (2000) Core knowledge. Am Psychol 55:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Spelke ES (1990) Principles of object perception. Cogn Sci 14:29–56

    Article  Google Scholar 

  • Spelke ES, Tsivkin S (2001) Language and number: a bilingual training study. Cognition 78:45–88

    Article  PubMed  CAS  Google Scholar 

  • Tomasello M (1999) The cultural origins of human cognition. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Tomasello M (2000) Primate cognition: introduction to the issue. Cogn Sci 24:351–361

    Article  Google Scholar 

  • Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Biases in judgments reveal some heuristics of thinking under uncertainty. Science 185:1124–1131

    Article  PubMed  Google Scholar 

  • Watanabe S, Troje (2006) Anim Cogn 9 DOI 10.1007/s10071-0060-0048-1

  • Weir AAS, Kacelnik A (2006) A New Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending metal strips according to needs. Anim Cogn 9, DOI 10.1007/s10071-006-0052-5

  • Wharton CM, Grafman J (1998) Deductive reasoning and the brain. Trends Cogn Sci 2:54–59

    Article  Google Scholar 

  • Yamazaki Y (2001) Effects of reinforcement history on establishment of equivalence relations. PhD Thesis, Keio University, Tokyo, Japan

  • Zentall T (2001) The case for a cognitive approach to animal learning and behavior. Behav Proc 54:65–78

    Article  Google Scholar 

  • Zentall T (2006) Imitation: definitions, evidence, and mechanisms. Anim Cogn 9, DOI 10.1007/s10071-006-0039-2

Download references

Acknowledgments

We thank Dr. Eiichi Izawa for his help with managing the symposium and with editing the special issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Watanabe.

Additional information

This contribution is part of the Special Issue “Animal Logics”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, S., Huber, L. Animal logics: Decisions in the absence of human language. Anim Cogn 9, 235–245 (2006). https://doi.org/10.1007/s10071-006-0043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-006-0043-6

Keywords

Navigation