Skip to main content
Log in

How fish do geometry in large and in small spaces

  • Original Article
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brown C, Braithwaite VA (2005) Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcope. Behav Ecol 16:482–487

    Article  Google Scholar 

  • Burt de Perera T (2004) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68:291–295

    Article  Google Scholar 

  • Cheng K (1986) A purely geometric module in the rat's spatial representation. Cognition 23:149–178

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23

    Google Scholar 

  • Deipolyi A, Santos L, Hauser MD (2001) The role of landmarks in cotton-top tamarin spatial foraging: evidence for geometric and non-geometric features. Anim Cogn 4:99–108

    Article  Google Scholar 

  • Gouteux S, Thinus-Blanc C, Vauclair J (2001) Rhesus monkeys use geometric and nongeometric information during a reorientation task. J Exp Psychol: Gen 130:505–519

    Article  CAS  Google Scholar 

  • Gray ER, Bloomfield LL, Ferrey A, Spetch ML, Sturdy CB (2005) Spatial encoding in mountain chickadees: features overshadow geometry. Biol Lett 1:314–317

    Article  Google Scholar 

  • Hermer L, Spelke ES (1994) A geometric process for spatial reorientation in young children. Nature 370:57–59

    Article  PubMed  CAS  Google Scholar 

  • Hermer L, Spelke ES (1996) Modularity and development: the case of spatial reorientation. Cognition 61:195–232

    Article  PubMed  CAS  Google Scholar 

  • Hupbach A, Nadel L (2005) Reorientation in a rhombic environment: no evidence for an encapsulated geometric module. Cogn Dev 20:279–302

    Article  Google Scholar 

  • Kelly DM, Spetch ML, Heth CD (1998) Pigeons (Columba livia) encoding of geometric and featural properties of a spatial environment. J Comp Psychol 112:259–269

    Article  Google Scholar 

  • Learmonth AE, Nadel L, Newcombe NS (2002) Children's use of landmarks: implication for modularity theory. Psychol Sci 13:337–341

    PubMed  Google Scholar 

  • Learmonth AE, Newcombe NS, Huttenlocher J (2001) Toddlers’ use of metric information and landmarks to reorient. J Exp Child Psychol 80:225–244

    Article  PubMed  CAS  Google Scholar 

  • Meyer MK, Wischnath L, Foerster W (1985) Lebendgeba¨rende Zierfishe: Arten der Welt. Mergus Verlag, Melle

    Google Scholar 

  • Nadel L, Hupbach A (2006) Cross-species comparisons in development: the case of the spatial “module”. In: Johnson MH, Munakata Y (eds) Attention and Performance XXI. Oxford University Press, Oxford, pp 499–511

  • Sovrano VA, Vallortigara G (2006) Dissecting the geometric module: a sense-linkage for metric and landmark information in animals’ spatial reorientation. Psych Sci 17

  • Sovrano VA, Bisazza A, Vallortigara G (2001) Lateralization of response to social stimuli in fishes: a comparison between different methods and species. Physiol Behav 74:237–244

    Article  PubMed  CAS  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition 85:B51–B59

    Article  PubMed  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish views it: conjoining geometric and nongeometric information for spatial reorientation. J Exp Psychol: Anim Behav Process 29:199–210

    Article  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2005) Animals’ use of landmarks and metric information to reorient: effects of the size of the experimental space. Cognition 97:121–133

    Article  PubMed  Google Scholar 

  • Sovrano VA, Rainoldi C, Bisazza A, Vallortigara G (1999) Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav Brain Res 106:175–180

    Article  Google Scholar 

  • Spelke ES (2000) Core knowledge. Am Psychol 55:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Spelke ES (2003) What makes us smart. Core knowledge and natural language. In: Gentner D, Goldin-Meadow S (eds) Language in mind. Advances in the study of language and thought. MIT Press, Cambridge, MA, pp 277–311

    Google Scholar 

  • Spelke ES, Tsivkin S (2001) Initial knowledge and conceptual change: space and number. In: Bowerman M, Levinson S (eds) Language acquisition and conceptual development. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Vallortigara G (2004) Visual cognition and representation in birds and primates. In: Rogers LJ, Kaplan G (eds) Vertebrate comparative cognition: are primates superior to non-primates? Kluwer Academic/Plenum Publishers, Boston, New York, pp 57–94

    Google Scholar 

  • Vallortigara G (2006) The cognitive chicken: visual and spatial cognition in a non-mammalian brain. In: Wasserman EA, Zentall TR (eds) comparative cognition: experimental explorations of animal intelligence. Oxford University Press, Oxford, UK, pp 41–58

  • Vallortigara G, Sovrano VA (2002) Conjoining information from different modules: a comparative perspective. Behav Brain Sci 25:701–702

    Article  Google Scholar 

  • Vallortigara G, Feruglio M, Sovrano VA (2005) Reorientation by geometric and landmark information in environments of different size. Dev Sci 8:393–401

    Article  PubMed  Google Scholar 

  • Vallortigara G, Pagni P, Sovrano VA (2004) Separate geometric and non-geometric modules for spatial reorientation: evidence from a lopsided animal brain. J Cogn Neurosci 16:390–400

    Article  PubMed  Google Scholar 

  • Vallortigara G, Zanforlin M, Pasti G (1990) Geometric modules in animal's spatial representation: a test with chicks. J Comp Psychol 104:248–254

    Article  PubMed  CAS  Google Scholar 

  • Vargas JP, Lopez JC, Salas C, Thinus-Blanc C (2004) Encoding of geometric and featural spatial information by Goldfish (Carassius auratus). J Comp Psychol 118:206–216

    Article  PubMed  Google Scholar 

  • Wang RF, Spelke ES (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376–382

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rosa Damiani for help with training of the animals. G.V was supported by grants MIUR Cofin 2004, 2004070353_002 “Intel-lat” and MIPAF “Ben-o-lat”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Anna Sovrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sovrano, V.A., Bisazza, A. & Vallortigara, G. How fish do geometry in large and in small spaces. Anim Cogn 10, 47–54 (2007). https://doi.org/10.1007/s10071-006-0029-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-006-0029-4

Keywords

Navigation