Skip to main content
Log in

Improving the production of natamycin in Streptomyces natalensis HW-2 by L-valine feeding

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

L-valine (L-Val) was previously confirmed to promote natamycin biosynthesis in S. natalensis HW-2. In this study, natamycin yield was 1.9-fold increase with 0.5 g/L L-Val feeding. The level of free amino acids in the broth was significantly affected. Transcriptome analysis showed that 646 and 189 genes were significantly differential expression at 48 h and 60 h, respectively. 7 differential expression genes in branched-chain amino acids (BCAAs) degradation were up-regulated. To further investigate the role of BCAAs degradation on natamycin biosynthesis, the gene ilvE, which encoded branched-chain amino acid aminotransferase (BCAT), was homologously overexpressed. The optimal mutant, S. natalensis LY08, was obtained, and its natamycin production was increased by 179%. With the optimized L-Val supplementation concentration, natamycin yield was increased to 2.02 g/L by strain LY08. This finding indicated the roles of BCAAs degradation on natamycin biosynthesis, and provided an efficient strategy to improve natamycin production in S. natalensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ai M, Qiu X, Huang J, Wu C, Jin Y, Zhou R. Characterizing the microbial diversity and major metabolites of Sichuan bran vinegar augmented by Monascus purpureus. International Journal of Food Microbiology. 292: 83-90 (2018)

    Article  PubMed  Google Scholar 

  • Aparicio JF, Barreales EG, Payero TD, Vicente CM, de Pedro A, Santos-Aberturas J. Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Applied Microbiology and Biotechnology. 100(1): 61-78 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Aparicio JF, Caffrey P, Gil JA, Zotchev SB. Polyene antibiotic biosynthesis gene clusters. Applied Microbiology and Biotechnology. 61(3): 179-188 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Aparicio JF, Mendes MV, Anton N, Recio E, Martin JF. Polyene macrolide antibiotic biosynthesis. Current Medicinal Chemistry. 11(12): 1645-1656 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of infectious keratitis. Ophthalmology. 124(11): 1678-1689 (2017)

    Article  PubMed  Google Scholar 

  • Beites T, Rodriguez-Garcia A, Santos-Beneit F, Moradas-Ferreira P, Aparicio JF, Mendes MV. Genome-wide analysis of the regulation of pimaricin production in Streptomyces natalensis by reactive oxygen species. Applied Microbiology and Biotechnology. 98(5): 2231-2241 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Callejas-Quijada G, Chavarria-Hernandez N, Lopez-Cuellar MD, Zepeda-Bastida A, Rodriguez-Hernandez AI. Films of biopolymers, pectin and gellan, enriched with natamycin and clove essential oils for the packaging of Corn tortilla: Protection against Staphylococcus aureus and Candida parapsilosis. Food Microbiology. 110: 104156 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Civelek I, Cagri-Mehmetoglu A. Determination of antifungal effect of edible coatings containing Williopsis saturnus var. saturnus against yeast and mold growth on kashar cheese. Journal of Food Science. 84(2): 311-318 (2019)

  • Dezfulian MH, Foreman C, Jalili E, Pal M, Dhaliwal RK, Roberto DK, Imre KM, Kohalmi SE, Crosby WL. Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC Plant Biology. 17(1): 71 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsayed E, Farid M, El-Enshasy H. Improvement in natamycin production by Streptomyces natalensis with the addition of short-chain carboxylic acids. Process Biochemistry. 48(12): 1831-1838 (2013)

    Article  CAS  Google Scholar 

  • Elsayed E, Farid M, El-Enshasy H. Enhanced natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnology. 19(1): 46 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M, Yi JS, Kim J, Kim JN, Kim MW, Kim BG. Reconstruction of a high-quality metabolic model enables the identifcation of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2). Biotechnology Journal.(9): 1185-1194 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim YC, Jung Y, Han JH, Zhang C, Yun CW, Lee S. The overexpression of cucumber (Cucumis sativus L.) genes that encode the branched-chain amino acid transferase modulate flowering time in Arabidopsis thaliana. Plant Cell Reports. 38(1): 25-35 (2019)

  • Li M, Chen S, Li J, Ji Z. Propanol addition improves natamycin biosynthesis of Streptomyces natalensis. Applied Biochemistry and Biotechnology. 172(7): 3424-3432 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chu J, Zhang S, Hang H, Zhuang Y, Ge Y. Effects of biotin and amino acids on biosynthesis of lincomycin. Chinese Journal of Antibiotics. 33(1): 6-13 (2008)

    Google Scholar 

  • Li Z, Jiang W, Wang Y, Hao Y, Chu, j., , Zhuang Y, Zhang S. Effect of valine, isoleucine and leucine on the biosythes is of biotechspiramyin. Chinese Journal of Antibitics. 32(11): 660-668 (2007)

  • Liu SP, Yuan PH, Wang YY, Liu XF, Zhou ZX, Bu QT, Yu P, Jiang H, Li YQ. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10. Microbiology Research. 173: 25-33 (2015)

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△ CT Method. Methods. 25(4): 402-8 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Luo JM, Li JS, Liu D, Liu F, Wang YT, Song XR, Wang M. Genome shuffling of Streptomyces gilvosporeus for improving natamycin production. Journal of Agricultural and Food Chemistry. 60(23): 6026-36 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Jamwal V, Singh VP, Wazir P, Awasthi P, Singh D, Vishwakarma RA, Gandhi SG, Chaubey A. Revelation and cloning of valinomycin synthetase genes in Streptomyces lavendulae ACR-DA1 and their expression analysis under different fermentation and elicitation conditions. Journal of Biotechnology. 253: 40-47 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Wang D, Wei L, Zhang Y. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2. Applied Microbiology and Biotechnology. 104(10): 4471-4482 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Stirrett K, Denoya C, Westpheling J. Branched-chain amino acid catabolism provides precursors for the type II polyketide antibiotic, actinorhodin, via pathways that are nutrient dependent. Journal of Microbiology and Biotechnology. 36(1): 129-137 (2009)

    CAS  Google Scholar 

  • Sun J, Li J, Yao L, Zheng Y, Yuan J, Wang D. UV-ARTP-DES compound mutagenesis breeding improves natamycin production of Streptomyces natalensis HW-2 and reveals transcriptional changes by RNA-seq. Food Science and Biotechnology. 32(3): 341-352 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Sunada A, Kimura K, Nishi I, Toyokawa M, Ueda A, Sakata T, Suzuki T, Inoue Y, Ohashi Y, Asari S, Iwatani Y. In vitro evaluations of topical agents to treat Acanthamoeba keratitis. Ophthalmology. 121(10): 2059-2065 (2014)

    Article  PubMed  Google Scholar 

  • Wang D, Wei L, Zhang Y, Zhang M, Gu S. Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor. Applied Microbiology and Biotechnology. 101(17): 6705-6712 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Yuan J, Gu S, Shi Q. Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2. Applied Microbiology and Biotechnology. 97(12): 5527-5534 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhang Y, Zheng Y, Chen Y, Xu P, Wang Z. Effect of L-valine on biosynthesis of natamycin by Streptomyces natalensis HW-2. Fine Chemicals. 36(4): 708-714 (2019)

    Google Scholar 

  • Xu X, Peng X, Huan C, Chen J, Meng Y, Fang S. Development of natamycin-loaded zein-casein composite nanoparticles by a pH-driven method and application to postharvest fungal control on peach against Monilinia fructicola. Food Chemistry. 404: 134659 (2023)

    Article  CAS  PubMed  Google Scholar 

  • Yi JS, Kim M, Kim EJ, Kim BG. Production of pikromycin using branched chain amino acid catabolism in Streptomyces venezuelae ATCC 15439. Journal of Microbiology and Biotechnology. 45(5): 293-303 (2018)

    CAS  Google Scholar 

  • Zeng X, Miao W, Zeng H, Zhao K, Zhou Y, Zhang J, Zhao Q, Tursun D, Xu D, Li F. Production of natamycin by Streptomyces gilvosporeus Z28 through solid-state fermentation using agro-industrial residues. Bioresource Technology. 273: 377-385 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wei L, Zhang Y, He J, Wang D. Breeding of high natamycin-producing strains and optimizing of fermentation process. Journal of Henan University of Science and Technology (Natural Science). 37(4):81-87(2016)

    CAS  Google Scholar 

  • Zhu J, Cai D, Xu H, Liu Z, Zhang B, Wu F, Li J, Chen S. Enhancement of precursor amino acid supplies for improving bacitracin production by activation of branched chain amino acid transporter BrnQ and deletion of its regulator gene lrp in Bacillus licheniformis. Synthetic and Systems Biotechnology. 3(4): 236-243 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was provided by the National Natural Science Foundation of China (No. 31401672), and Young Teachers in Colleges and Universities of Henan Province (2016GGJS-060)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3953 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Zhang, Y., Wang, D. et al. Improving the production of natamycin in Streptomyces natalensis HW-2 by L-valine feeding. Food Sci Biotechnol (2024). https://doi.org/10.1007/s10068-024-01570-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10068-024-01570-8

Keywords

Navigation