Skip to main content
Log in

Vibrio-infecting bacteriophages and their potential to control biofilm

  • Invited Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The emergence and spread of antibiotic-resistant pathogenic bacteria have necessitated finding new control alternatives. Under these circumstances, lytic bacteriophages offer a viable and promising option. This review focuses on Vibrio-infecting bacteriophages and the characteristics that make them suitable for application in the food and aquaculture industries. Bacteria, particularly Vibrio spp., can produce biofilms under stress conditions. Therefore, this review summarizes several anti-biofilm mechanisms that phages have, such as stimulating the host bacteria to produce biofilm-degrading enzymes, utilizing tail depolymerases, and penetrating matured biofilms through water channels. Additionally, the advantages of bacteriophages over antibiotics, such as a lower probability of developing resistance and the ability to infect dormant cells, are discussed. Finally, this review presents future research prospects related to further utilization of phages in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. Federation of European Microbiological Societies. 96: fiaa031 (2020)

    Article  CAS  Google Scholar 

  • Almeida A, Cunha Â, Gomes NC, Alves E, Costa L, Faustino MA. Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Marine drugs. 7: 268-313 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amankwah S, Abdella K, Kassa T. Bacterial biofilm destruction: A focused review on the recent use of phage-based strategies with other antibiofilm agents. Nanotechnology, Science and Applications. 161-177 (2021)

    Google Scholar 

  • Anh VTT, Pham-Khanh NH, Han NS, Sunahara H, Kamei K. Characterization and Complete Genomic Analysis of Vibrio parahaemolyticus-Infecting Phage KIT05. Current Microbiology. 79: 221 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Azeredo J, García P, Drulis-Kawa Z. Targeting biofilms using phages and their enzymes. Current Opinion in Biotechnology. 68: 251-261 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Bischoff V, Zucker F, Moraru C. Marine Bacteriophages. Encyclopedia of Virology. 4: 322-341 (2021)

    Article  Google Scholar 

  • Cao Y, Zhang Y, Lan W, Sun X. Characterization of vB_VpaP_MGD2, a newly isolated bacteriophage with biocontrol potential against multidrug-resistant Vibrio parahaemolyticus. Archives of Virology. 166: 413-426 (2021)

    Article  CAS  PubMed  Google Scholar 

  • CDC. Cholera - Vibrio cholerae infection. CDC. Available from: https://www.cdc.gov/cholera/general/index.html#one. Feb. 20, 2022.

  • Cho C, Choi S, Kim MH, Kim BS. Vibrio vulnificus PlpA facilitates necrotic host cell death induced by the pore forming MARTX toxin. Journal of Microbiology, 60: 224-233 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Culot A, Grosset N, Gautier M. Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture. 513: 734423 (2019)

    Article  CAS  Google Scholar 

  • Ding T, Sun H, Pan Q, Zhao F, Zhang Z, Ren H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Research. 286: 198080 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Dubey S, Singh A, Kumar BN, Singh NK, Tyagi A. Isolation and characterization of bacteriophages from inland saline aquaculture environments to control Vibrio parahaemolyticus contamination in shrimp. Indian Journal of Microbiology. 61: 212-217 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmahdi S, DaSilva LV, Parveen S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food microbiology. 57: 128-134 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Endersen, L., Coffey, A. The use of bacteriophages for food safety. Current Opinion in Food Science, 36: 1-8 (2020)

    Article  Google Scholar 

  • Gao L, Ouyang M, Li Y, Zhang H, Zheng X-F, Li H-X, Rao S-Q, Yang Z-Q, Gao S. Isolation and Characterization of a Lytic Vibriophage OY1 and Its Biocontrol Effects Against Vibrio spp. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.1041942(2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • Geredew K, Legesse M, James G, Speck P. Mini-review: efficacy of lytic bacteriophages on multispecies biofilms. Biofouling. 35: 472-481 (2019)

    Article  Google Scholar 

  • González-Gómez JP, López-Cuevas O, Castro-del Campo N, González-López I, Martínez-Rodríguez CI, Gomez-Gil B, Chaidez C. Genomic and biological characterization of the novel phages vB_VpaP_AL-1 and vB_VpaS_AL-2 infecting Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND). Virus Research. 312: 198719 (2022)

    Article  PubMed  Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Applied and environmental microbiology. 75: 93-100 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, He H, Wang H, Sung YY, Mok WJ. Characterization and Genomic Analysis of ssDNA Vibriophage vB_VpaM_PG19 within Microviridae, Representing a Novel Viral Genus. Microbiology Spectrum. 10: e00585-00522 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper DR, Parracho HM, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S. Bacteriophages and biofilms. Antibiotics. 3: 270-284 (2014)

    Article  PubMed Central  Google Scholar 

  • Higuera G, Bastías R, Tsertsvadze G, Romero J, Espejo RT. Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar. Aquaculture. 392: 128-133 (2013)

    Article  Google Scholar 

  • Hodgson K. Bacteriophage therapy. Microbiology Australia. 34: 28-31 (2013)

    Article  Google Scholar 

  • Kang S, Zhang L, Liao J, Zhang D, Wu S, Zhang X, Qin Q, Wei J. Isolation and Characterization of a Newly Discovered Phage, V-YDF132, for Lysing Vibrio harveyi. Viruses. 14: 1802 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar P, Das TK, Ghosh S, Pradhan S, Chakrabarti S, Mondal KC, Ghosh K. Characterization of a Vibrio-infecting bacteriophage, VPMCC5, and proposal of its incorporation as a new genus in the Zobellviridae family. Virus Research. 321: 198904 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Karunasagar I, Shivu M, Girisha S, Krohne G, Karunasagar I. Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture. 268: 288-292 (2007)

    Article  Google Scholar 

  • Kim BS. Spatiotemporal regulation of Vibrio exotoxins by HlyU and other transcriptional regulators. Toxins. 12: 544 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BS, Gavin HE, Satchell KJF. Variable virulence of biotype 3 Vibrio vulnificus due to MARTX toxin effector domain composition. mSphere. 2: e00272-17 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H-J, Kim Y-T, Kim HB, Choi SH, Lee J-H. Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases. Food microbiology. 94: 103630 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee EG, Chun BC. Epidemiologic characteristics and case fatality rate of Vibrio vulnificus Infection: analysis of 761 cases from 2003 to 2016 in Korea. Journal of Korean Medical Science. 37: 9 (2022)

    Article  Google Scholar 

  • Kimura K, Itoh Y. Characterization of poly-γ-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-γ-glutamate. Applied and Environmental Microbiology. 69: 2491-2497 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korea Meteorological Administration. Korean Climate Change Assessment Report 2020. Available from: http://www.climate.go.kr/home/cc_data/2020/Korean_Climate_Change_Assessment_Report_2020_2_eng_summary.pdf. Feb. 20, 2020.

  • Latka A, Drulis-Kawa Z. Advantages and limitations of microtiter biofilm assays in the model of antibiofilm activity of Klebsiella phage KP34 and its depolymerase. Scientific Reports. 10: 1-12 (2020)

    Article  Google Scholar 

  • Le TS, Southgate PC, O’Connor W, Vu SV, Kurtböke Dİ. Application of bacteriophages to control Vibrio alginolyticus contamination in oyster (Saccostrea glomerata) larvae. Antibiotics. 9: 415 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Oh M, Kim BS. Phage biocontrol of zoonotic food-borne pathogen Vibrio parahaemolyticus for seafood safety. Food Control. 144: 109334 (2023)

    Article  CAS  Google Scholar 

  • Letchumanan V, Chan K-G, Pusparajah P, Saokaew S, Duangjai A, Goh B-H, Ab Mutalib N-S, Lee L-H. Insights into bacteriophage application in controlling Vibrio species. Frontiers in Microbiology. 7: 1114 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Wang Z, Zhao J, Wang L, Xie G, Huang J, Zhang Y. A novel vibriophage vB_VcaS_HC containing lysogeny-related gene has strong lytic ability against pathogenic bacteria. Virologica Sinica. 36: 281-290 (2021a)

    Article  CAS  PubMed  Google Scholar 

  • Li J, Tian F, Hu Y, Lin W, Liu Y, Zhao F, Ren H, Pan Q, Shi T, Tong Y. Characterization and genomic analysis of BUCT549, a novel bacteriophage infecting Vibrio alginolyticus with flagella as receptor. Frontiers in Microbiology. 12: 668319 (2021b)

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Liang Y, Wang Z, Yao Y, Chen X, Shao A, Lu L, Dang H. Isolation and Characterization of a Novel Vibrio natriegens—Infecting Phage and Its Potential Therapeutic Application in Abalone Aquaculture. Biology. 11: 1670 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Wang Y, Hong B, Li Y, Ma Y, Wang J. Isolation and Characterization of a Lytic Vibrio parahaemolyticus Phage vB_VpaP_GHSM17 from Sewage Samples. Viruses. 14: 1601 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnerborg M, Weintraub A, Albert MJ, Widmalm G. Depolymerization of the capsular polysaccharide from Vibrio cholerae O139 by a lyase associated with the bacteriophage JA1. Carbohydrate Research. 333: 263-269 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zheng T, Quan R, Jiang X, Tong G, Wei X, Lin M. Biological characteristics and genomic analysis of a novel Vibrio parahaemolyticus phage phiTY18 isolated from the coastal water of Xiamen China. Frontiers in Cellular and Infection Microbiology. 1610 (2022a)

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Han G, Li Z, Cun S, Hao B, Zhang J, Liu X. Bacteriophage therapy in aquaculture: Current status and future challenges. Folia Microbiologica. 67: 573-590 (2022b)

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Clark, D. P., Stahl, D., Martinko, J. M. Brock biology of microorganisms. 16th edition. Pearson, USA. pp. 191-195 (2020)

    Google Scholar 

  • Matamp N, Bhat SG. Genome characterization of novel lytic Myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus. Archives of Virology. 165: 387-396 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Misol Jr GN, Kokkari C, Katharios P. Biological and genomic characterization of a novel jumbo bacteriophage, vB_VhaM_pir03 with broad host lytic activity against Vibrio harveyi. Pathogens. 9: 1051 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon S, Sohn I-W, Hong Y, Lee H, Park J-H, Kwon G-Y, Lee S, Youn S-K. Emerging pathogens and vehicles of food-and water-borne disease outbreaks in Korea, 2007–2012. Osong public health and research perspectives. 5: 34-39 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing. Viruses. 10: 205 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakai T, Park SC. Bacteriophage therapy of infectious diseases in aquaculture. Research in microbiology. 153: 13-18 (2002)

    Article  PubMed  Google Scholar 

  • Nakai T, Sugimoto R, Park K-H, Matsuoka S, Mori K-i, Nishioka T, Maruyama K. Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Diseases of aquatic organisms. 37: 33-41 (1999)

    Article  CAS  PubMed  Google Scholar 

  • O'Sullivan L, Bolton D, McAuliffe O, Coffey A. Bacteriophages in food applications: from foe to friend. Annual Review of Food Science and Technology. 10: 151-172 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Oliver J, Alam M, Ali A, Waldor M, Qadri F. Martinez− Urtaza, J. Vibrio spp. infections. Nature Reviews Disease Primers. 4: 1-19 (2018)

    Article  Google Scholar 

  • Orozco-Ochoa AK, González-Gómez JP, Castro-del Campo N, Lira-Morales JD, Martínez-Rodríguez CI, Gomez-Gil B, Chaidez C. Characterization and genome analysis of six novel Vibrio parahaemolyticus phages associated with acute hepatopancreatic necrosis disease (AHPND). Virus Research. 323: 198973 (2023)

    Article  CAS  Google Scholar 

  • Park SC, Nakai T. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Diseases of aquatic organisms. 53: 33-39 (2003)

    Article  PubMed  Google Scholar 

  • Park SC, Shimamura I, Fukunaga M, Mori K-I, Nakai T. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Applied and Environmental Microbiology. 66: 1416-1422 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Schwarz J, Hashem F, Vimini B. Reduction of Salmonella in ground chicken using a bacteriophage. Poultry Science. 96: 2845-2852 (2017)

    Article  PubMed  Google Scholar 

  • Plaut, R. D., Stibitz, S. Regulatory considerations for bacteriophage therapy products. Phage Therapy: A Practical Approach. 337-349 (2019)

    Chapter  Google Scholar 

  • Plaza N, Castillo D, Pérez-Reytor D, Higuera G, García K, Bastías R. Bacteriophages in the control of pathogenic vibrios. Electronic Journal of Biotechnology. 31: 24-33 (2018)

    Article  CAS  Google Scholar 

  • Ren Y, Wang L, Chen R, Li X, Li S, Li J, Li Q, Wang Z, Xu Y. Isolation and characterization of a novel phage vB_ValP_VA-RY-3 infecting Vibrio alginolyticus. Virus Research. 322: 198945 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Richards GP. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage. 4: e975540 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Salmond GP, Fineran PC. A century of the phage: past, present and future. Nature Reviews Microbiology. 13: 777-786 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nature Reviews Microbiology. 11: 675-687 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future microbiology. 7: 1147-1171 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Sillankorva SM, Oliveira H, Azeredo J. Bacteriophages and their role in food safety. International journal of microbiology. (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva YJ, Costa L, Pereira C, Mateus C, Cunha A, Calado R, Gomes NC, Pardo MA, Hernandez I, Almeida A. Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS ONE. 9: e114197 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva YJ, Moreirinha C, Pereira C, Costa L, Rocha RJ, Cunha Â, Gomes NC, Calado R, Almeida A. Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with Phage AS-A. Aquaculture. 450: 225-233 (2016)

    Article  Google Scholar 

  • Srisangthong I, Sangseedum C, Chaichanit N, Surachat K, Suanyuk N, Mittraparp-Arthorn P. Characterization and Genome Analysis of Vibrio campbellii Lytic Bacteriophage OPA17. Microbiology Spectrume. 01623-01622 (2023)

    Article  Google Scholar 

  • Stoos KAB, Ren J, Shields-Cutler RR, Sams KL, Caldwell S, Ho MB, Rivara G, Whistler CA, Jones SH, Wiedmann M. Coastal water bacteriophages infect various sets of Vibrio parahaemolyticus sequence types. Frontiers in Microbiology. 13. (2022)

    Article  Google Scholar 

  • Suh, G. A., Lodise, T. P., Tamma, P. D., Knisely, J. M., Alexander, J., Aslam, S., Barton, K. D., Bizzell, E., Totten, K. M., Campbell, J. L. Considerations for the use of phage therapy in clinical practice. Antimicrobial agents and chemotherapy, 66(3): e02071-02021 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris Jr JG. Bacteriophage therapy. Antimicrobial agents and chemotherapy. 45: 649-659. (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajuddin S, Khan AM, Chong LC, Wong CL, Tan JS, Ina-Salwany MY, Lau HY, Ho KL, Mariatulqabtiah AR, Tan WS. Genomic analysis and biological characterization of a novel Schitoviridae phage infecting Vibrio alginolyticus. Applied Microbiology and Biotechnology. 107(2-3): 749-768 (2022)

    PubMed  Google Scholar 

  • Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib N-A, Jambari NN, Hara H, Thung TY, Lee E, Radu S. Isolation and characterization of six Vibrio parahaemolyticus lytic bacteriophages from seafood samples. Frontiers in Microbiology. 12: 616548 (2021a)

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan D, Dahl A, Middelboe M. Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains. Applied and Environmental Microbiology. 81: 4489-4497 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, L., Li, H., Chen, B., Huang, J., Li, Y., Zheng, H., Liu, H., Zhao, Y., Wang, J. J. Dual-species biofilms formation of Vibrio parahaemolyticus and Shewanella putrefaciens and their tolerance to photodynamic inactivation. Food Control, 125: 107983 (2021b)

    Article  CAS  Google Scholar 

  • Tian F, Li J, Hu Y, Zhao F, Ren H, Pan Q, Nazir A, Li F, Tong Y. Characterization and complete genome sequence analysis of a newly isolatedphage against Vibrio parahaemolyticus from sick shrimp in Qingdao, China. PloS ONE. 17: e0266683 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu AVT, Pham-Khanh NH, Nguyen SH, Sunahara H, Xuan TDT, Kamei K. Isolation, characterization, and complete genome sequence of vibrio phage KIT04, a novel lytic phage of the subfamily ermolyevavirinae. Virology. (2023)

    Article  PubMed  Google Scholar 

  • Tyagi A, Dubey S, Sharma C, Sudan P, Rai S, Kumar BN, Chandra M, Arora A. Complete genome sequencing and characterization of single-stranded DNA Vibrio parahaemolyticus phage from inland saline aquaculture environment. Virus Genes. 58: 483-487 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D, Spriet I, Depypere M, Wagemans J, Lavigne R. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. The Lancet Infectious Diseases.https://doi.org/10.1016/S1473-3099(21)00612-5 (2022)

    Article  PubMed  Google Scholar 

  • Vezzulli L, Grande C, Reid PC, Hélaouët P, Edwards M, Höfle MG, Brettar I, Colwell RR, Pruzzo C. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences. 113: E5062-E5071 (2016)

    Article  CAS  Google Scholar 

  • Vikram A, Woolston J, Sulakvelidze A. Phage biocontrol applications in food production and processing. Current issues in molecular biology. 40: 267-302 (2021)

    Article  PubMed  Google Scholar 

  • Vilas Boas D, Almeida C, Sillankorva S, Nicolau A, Azeredo J, Azevedo NF. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling. 32: 179-190 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Vinod M, Shivu M, Umesha K, Rajeeva B, Krohne G, Karunasagar I, Karunasagar I. Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture. 255: 117-124 (2006)

    Article  CAS  Google Scholar 

  • Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Frontiers in Microbiology. 6. (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia H, Yang H, Yan N, Hou W, Wang H, Wang X, Wang H, Zhou M. Bacteriostatic effects of phage F23s1 and its endolysin on Vibrio parahaemolyticus. Journal of Basic Microbiology. 62: 963-974 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Xuan G, Lin H, Wang J. Complete genome analysis of the newly isolated Vibrio phage vB_VpP_WS1 of the family Microviridae. Archives of Virology. 167: 1311-1316 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Chen H, Guo S, Tan S, Xie Z, Zhang J, Wu Q, Tan Z. Characterization and genome analysis of a novel Vibrio parahaemolyticus phage vB_VpP_DE17. Virus Research. 307: 198580 (2022a)

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Chen H, Huang Q, Xie Z, Liu Z, Zhang J, Ding Y, Chen M, Xue L, Wu Q. Characterization of the Novel Phage vB_VpaP_FE11 and Its Potential Role in Controlling Vibrio parahaemolyticus Biofilms. Viruses. 14: 264 (2022b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H, Ye Y, Gao X, Wu Q, Tan Z. Isolation and Characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for Lysing Vibrio parahaemolyticus. Frontiers in Microbiology. 11: 259 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Chen H, Huang Q, Huang S, He J, Zhang J, Wu Q, Li X, Hu W, Yang M. Characterization and Genomic Analysis of Novel Vibrio parahaemolyticus Phage vB_VpaP_DE10. Viruses. 14: 1609 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz FH, Visick KL. Vibrio biofilms: so much the same yet so different. Trends in microbiology. 17: 109-118 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You HJ, Lee JH, Oh M, Hong SY, Kim D, Noh J, Kim M, Kim BS. Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster. Food Research International. 150: 110779 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2020R1F1A1070168 and NRF- 2022R1F1A1074305 to B.S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Sik Kim.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cevallos-Urena, A., Kim, J.Y. & Kim, B.S. Vibrio-infecting bacteriophages and their potential to control biofilm. Food Sci Biotechnol 32, 1719–1727 (2023). https://doi.org/10.1007/s10068-023-01361-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01361-7

Keywords

Navigation