Skip to main content

Advertisement

Log in

Beneficial health effects of polyphenols metabolized by fermentation

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

High daily intake of polyphenol-rich meal in some countries could be regarded as a healthy meal. However, the knowledge about the bioavailability and functionality of the exiting amounts of polyphenol into the large intestine needs to be elucidated, particularly the beneficial health effects and its fermentation characteristics during fermentation. Thus, this review focuses on the influence of polyphenols metabolized by fermentation and elucidates their health attributes. Besides, it also summarized the potential benefits of polyphenols and discussed the need for further research to fully understand the health attributes of polyphenols.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamse SL, Pool-Zobel BL, Rechkemmer G. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis. 20: 629-634 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Adolphe JL, Whiting SJ, Juurlink BH, Thorpe LU, Alcorn J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. British Journal of Nutrition. 103: 929-938 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Aghamohammad A, Cheraghi T, Gharagozlou M, Movahedi M, Rezaei N, Yeganeh M, Parvaneh N, Abolhassani H, Pourpak Z, Moin M. IgA deficiency: correlation between clinical and immunological phenotypes. Journal of Clinical Immunology. 29: 130-136 (2009)

    Article  CAS  Google Scholar 

  • Alvarez-Cilleros D, Ramos S, Lopez-Oliva ME, Escriva F, Alvarez C, Fernandez-Millan E, Martin MA. Cocoa diet modulates gut microbiota composition and improves intestinal health in Zucker diabetic rats. Food Research International. 132: 109058 (2020)

    Article  CAS  PubMed  Google Scholar 

  • An C, Kuda T, Yazaki T, Takahashi H, Kimura B. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Applied Microbiology Biotechnology. 98: 2779-2787 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Arts ICW, Hollman PCH. Polyphenols and disease risk in epidemiologic studies. American Journal of Clinical Nutrition. 81: 317-325 (2005)

    Article  Google Scholar 

  • Azzini E, Giacometti J, Russo GL. Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxidative Medicine and Cellular Longevity. 27: 40-64 (2017)

    Google Scholar 

  • Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. Journal of Diabetes and Metabolic Disorder. 12: 43 (2013)

    Article  CAS  Google Scholar 

  • Balentine DA, Albano MC, Nair MG. Role of medicinal plants, herbs and spices in protecting human health. Nutrition Reviews. 7: 41-45 (1999)

    Google Scholar 

  • Ballow M. Primary immunodeficiency disorders: antibody deficiency. Journal of Allergy and Clinical Immunology. 109: 581-591 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Bassani B, Rossi T, De Stefano D, Pizzichini D, Corradino P, Macrì N, Bruno A. Potential chemopreventive activities of a polyphenol rich purified extract from olive mill wastewater on colon cancer cells. Journal of Functional Foods. 27: 236-248 (2016)

    Article  CAS  Google Scholar 

  • Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 46: 562-576 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beukema M, Faas MM, de Vos P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Experimental & Molecular Medicine. 52: 1364-1376 (2020)

    Article  CAS  Google Scholar 

  • Bilić-Šobot D, Zamaratskaia G, Rasmussen MK, Čandek-Potokar M, Škrlep M, Maja Prevolnik Povše M, Dejan Škorjanc D. Chestnut wood extract in boar diet reduces intestinal skatole production, a boar taint compound. Agronomy for Sustainable Development. 36: 62 (2016)

  • Bosscher D, Breynaert A, Pieters L, Hermans N. Food-based strategies to modulate the composition of the intestinal microbiota and their associated health effects. Journal of Physiology and Pharmacology. 6: 5-11 (2009)

    Google Scholar 

  • Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews. 56: 317-333 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Breedvel A, van Egmond M. IgA and FcαRI: Pathological roles and therapeutic opportunities. Frontiers in Immunology. 10: 553 (2019)

    Article  CAS  Google Scholar 

  • Brocca A, Virzì GM, de Cal M, Cantaluppi V, Ronco C. Cytotoxic effects of p-cresol in renal epithelial tubular cells. Blood Purification. 36: 219-225 (2013)

    Article  PubMed  Google Scholar 

  • Buhrmann C, Kraehe P, Lueders C, Shayan P, Goel A, Shakibaei M. Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: Potential role of EMT. PLoS ONE. 9: e107514 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carasi P, Racedo SM, Jacquot C, Romanin DE, Serradell MA, Urdaci MC. Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. Journal of Immunological Research. 2015: 361604 (2015)

    Article  CAS  Google Scholar 

  • Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 553: 427-436 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Chen D, Tian G, Zheng P, Mao X, Yu J, He J, Huang Z, Luo Y, Luo J, Yu B. Soluble fiber and insoluble fiber regulate colonic microbiota and barrier function in a piglet model. Biomedical Research International. 2019: 7809171 (2019)

    Google Scholar 

  • Cheng YC, Sheen JM, Hu WL, Hung YC. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxidative Medicine and Cellular Longevity. 2017: 8526438 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheynier, V. Polyphenols in foods are more complex than often thought. American Journal of Clinical Nutrition. 81: 223-229 (2005)

    Article  Google Scholar 

  • Chong ES. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World Journal of Microbiology and Biotechnology. 30: 351-374 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Corthésy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiology. 5: 817-829 (2010)

    Article  PubMed  Google Scholar 

  • Cui X, Jin Y, Hofseth AB, Pena E, Habiger J, Chumanevich A, Hofseth LJ. Resveratrol suppresses colitis and colon cancer associated with colitis. Cancer Prevention Research. 3: 549-559 (2010)

    Article  CAS  PubMed  Google Scholar 

  • D'Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Annali dell’lstitutosuperiore di sanita. 43: 348-361 (2007)

    CAS  Google Scholar 

  • Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacological Research. 68: 95–107 (2013)

    Article  CAS  PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America. 107: 14691-14696 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidant & Redox Signaling. 18: 1818-1892 (2013)

    Article  CAS  Google Scholar 

  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Núñez G, Martens EC. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 167: 1339-1353 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Review in Food Science and Nutrition. 57: 3640-3649 (2017)

    Article  Google Scholar 

  • Dohrman A, Miyata S, Gallup M, Li JD, Chapelin C, Coste A, Escudier E, Nadel J, Basbaum C. Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochimica et Biophysica Acta. 1406: 251-259 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America. 107: 11971-11975 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominika S, Arjan N, Karyn RP, Henryk K. The study on the impact of glycated pea proteins on human intestinal bacteria. International Journal of Food Microbiology. 145: 267-272 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Dryden GW, Song M, McClain C. Polyphenols and gastrointestinal diseases. Current Opinion in Gastroenterology. 22: 165-170 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • During A, Debouche C, Raas T, Larondelle Y. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells. Journal of Nutrition. 142: 1798-1805 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Duthie GG, Brown KM. Reducing the risk of cardiovascular disease. In Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals; Goldberg, I., Ed.; Chapman & Hall: New York, NY, USA, pp. 19–38 (1994)

  • Duynhoven JV, Vaughan EE, Jacobs DM, Kemperman RA, Velzen EJJV, Gross G, Roger LC, Possemiers S, Smilde AK, Doré J, Westerhuis JA, de Wiele TV. Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences of the United States of America. 108: 4531-4538 (2011)

    Article  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 308: 1635-1638 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  • Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP, Martínez JA, Milagro FI. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry. 26: 651-660 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Fotschki B, Milala J, Jurgoński A, Karlińska E, Zduńczyk Z, Juśkiewicz J. Strawberry ellagitannins thwarted the positive effects of dietary fructooligosaccharides in rat cecum. Journal of Agriculture and Food Chemistry. 62: 5871-5880 (2014)

    Article  CAS  Google Scholar 

  • Fotschki B, Juskiewicz J, Jurgonski A, Kolodziejczyk K, Milala J, Kosmala M, Zdunczyk Z. Anthocyanins in strawberry polyphenolic extract enhance the beneficial effects of diets with fructooligosaccharides in the rat cecal environment. PLoS ONE. 11: e149081 (2016)

    Article  CAS  Google Scholar 

  • Ganai AA, Farooqi H. Bioactivity of genistein: a review of in vitro and in vivo studies. Biomedicine & Pharmacotherapy. 76: 30-38 (2015)

    Article  CAS  Google Scholar 

  • Georgiades P, Pudney PDA, Rogers S, Thornton DJ, Waigh TA. Tea derived galloylated polyphenols crosslink purified gastrointestinal mucins. PLoS ONE. 9: e105302 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 108: 975-982 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Kanaya S, Nishikawa T, Hara H, Terada A, Ishigami T, Hara Y. The effects of tea catechins on fecal flora of elderly residents in long-term care facilities. Journal of Nutritional Science and Vitaminology. 45: 135-141 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Goutzourelas N, Stagos D, Spanidis Y, Liosi M, Apostolou A, Priftis A, Haroutounian S, Spandidos DA, Tsatsakis AM, Kouretas D. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells. Molecular Medicine Report. 12: 5846-5856 (2015)

    Article  CAS  Google Scholar 

  • Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. Journal of Pediatric Gastroenterology and Nutrition. 28: 19-25 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Grosso G, Stepaniak U, Micek A, Kozela M, Stefler D, Bobak M, Pajak A. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the health, alcohol and psychosocial factors in Eastern Europe (HAPIEE) study. British Journal of Nutrition. 118: 60-68 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Yu S, Park JY, Kevin H, Joshua DL. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. Journal of Nutritional Biochemistry. 25: 439-445 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: Under-standing a hidden metabolic organ. Therapeutic Advances in Gastroenterology. 6: 295-308 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • Guri A, Li Y, Corredig M. Interfacial dilational properties of tea polyphenols and milk proteins with gut epithelia and the role of mucus in nutrient adsorption. Food & Function. 6: 3642-3651 (2015)

    Article  CAS  Google Scholar 

  • Hague A, Elder DJ, Hicks DJ, Paraskeva C. Apoptosis in colorectal tumour cells: Induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate, International Journal of Cancer. 60: 400-406 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 55: 481-504 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Haslam, E. Plant polyphenols (syn. vegetable tannins) and chemical defense-A reappraisal. Journal of Chemical Ecology. 14: 1789–1805 (1998)

  • Henning SM, Yang J, Hsu M, Lee RP, Grojean EM, Ly A, Tseng CH, Heber D, Li Z. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. European Journal of Nutrition. 57: 2759-2769 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet. 342: 1007-1011 (1993)

    Article  CAS  Google Scholar 

  • Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M. Flavonoids, flavonoid subclasses and breast cancer risk: A meta-analysis of epidemiologic studies. PLoS ONE. 8: e54318 (2013)

  • Hunter P. The inflammation theory of disease. The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Reports. 13: 968–970 (2012)

  • Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity. 2016: 7432797 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiao X, Wang Y, Lin Y, Lang Y, Li E, Zhang X, Zhang Q, Fen Y, Meng X, Li B. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. Journal of Nutritional Biochemistry. 64: 88-100 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Jin JS, Touyama M, Hisada T, Benno Y. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiology and Immunology. 56: 729-739 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Jing H, Wang S, Wang Y, Shen N, Gao XJ. Environmental contaminant ammonia triggers epithelial-to-mesenchymal transition-mediated jejunal fibrosis with the disassembly of epithelial cell-cell contacts in chicken. Science of the Total Environment. 726: 138686 (2020)

  • Johansson ME, Hansson GC. Mucus and the goblet cell. Digestive Diseases. 31: 305-309 (2013)

    Article  PubMed  Google Scholar 

  • Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America. 105: 15064-15069 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurgoński A, Juśkiewicz J, Zduńczyk Z, Matusevicius P, Kołodziejczyk K. Polyphenol-rich extract from blackcurrant pomace attenuates the intestinal tract and serum lipid changes induced by a high-fat diet in rabbits. European Journal Nutrition. 53: 1603-1613 (2014)

    Article  CAS  Google Scholar 

  • Kawabata K, Mukai R, Ishisaka A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food & Function. 6: 1399-1417 (2015)

    Article  CAS  Google Scholar 

  • Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 24: 1-25 (2019)

    Article  CAS  Google Scholar 

  • Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M, Fagarasan S. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 41: 152–165 (2014)

  • Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research. 61: 1361779 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kilua A, Han KH, Fukushima M. Effect of polyphenols isolated from purple sweet potato (Ipomoea batatas cv. Ayamurasaki) on the microbiota and the biomarker of colonic fermentation in rats fed with cellulose or inulin. Food & Function. 11: 10182–10192 (2020)

  • Kim Y, Keogh JB, Clifton PM. Polyphenols and glycemic control. Nutrients. 8: 17 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  • Kosmala M, Zduńczyk Z, Kołodziejczyk K, Klimczak E, Juśkiewicz J, Zduńczyk P. Chemical composition of polyphenols extracted from strawberry pomace and their effect on physiological properties of diets supplemented with different types of dietary fiber in rats. European Journal of Nutrition. 53: 521-532 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Kurulich AC, Tsau GJ, Brown A, Howard L, Klein BP, Jeffery EH, Kushad M, Wallig MA, Juvik JA. Carotene, tocopherol and ascorbate contents in subspecies of Brassica oleracea. Journal of Agriculture and Food Chemistry. 47: 1576-1581(1999)

    Article  Google Scholar 

  • Lakhanpal P, Rai DK. Quercetin: a versatile flavonoid. Internet Journal of Medical Update. 2: 20-37 (2007)

    Google Scholar 

  • Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research. 61: 219-225 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Larrosa M, Yañéz-Gascón MJ, Selma MV, González-Sarrías A, Toti S, Cerón JJ, Tomas-Barberán F, Dolara P, Espín JC. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. Journal of Agricultural and Food Chemistry. 57: 2211-2220 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Larrosa M, García-Conesa MT, Espín JC, Tomás-Barberán FA. Ellagitannins, ellagic acid and vascular health. Molecular Aspects of Medicine. 31: 513-539 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Jenner AM, Low CS, Lee YK. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Research in Microbiology. 157: 876-884 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Keirsey KI, Kirkland R, Grunewald ZI, Fischer JG, de La Serre CB. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. Journal of Nutriton. 148: 209-219 (2018)

    Article  Google Scholar 

  • Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry. 125: 288-306 (2011)

    Article  CAS  Google Scholar 

  • Li J, Wu T, Li N, Wang X, Chen G, Lyu X. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food & Function. 22: 333-343 (2019)

    Article  Google Scholar 

  • Liu J, Yue S, Yang Z, Feng W, Meng X, Wang A, Peng C, Wang C, Yan D. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacological Research. 134: 40-50 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hao W, He Z, Kwek E, Zhao Y, Zhu H, Liang N, Ma KY, Lei L, He WS, Chen ZY. Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food & Function. 10: 2847-2860 (2019)

    Article  CAS  Google Scholar 

  • Ma N, Tian Y, Wu Y, Ma X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Current Protein & Peptide Science. 18: 795-808 (2017)

    CAS  Google Scholar 

  • Macfarlane GT, Macfarlane S. Human colonic microbiota: Ecology, physiology and metabolic potential of intestinal bacteria. Scandinavian Journal of Gastroenterology Supplement. 222: 3-9 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Madigan M, Karhu E. The role of plant-based nutrition in cancer prevention. Journal of Unexplored Medicinal Data. 3: 9 (2018)

    Article  Google Scholar 

  • Manach C, Scalbert A, Morand C, Jiménez L, Rémésy C. Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition. 79: 727-747 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. American Journal of Clinical Nutrition. 81: 230S-242S (2005)

  • Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Research International. 2015: 905215 (2015)

  • Marques C, Fernandes I, Meireles M Faria, A, Spencer JP, Mateus N, Calhau C. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Scientific Reports. 8: 11341 (2018)

  • Marsilio V, Lanza B. Characterization of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. Journal of the Science of Food and Agriculture. 76: 520–524 (1998)

  • Martin K, Appel CL. Polyphenols as dietary supplements: a double-edged sword. Nutrition and Dietary Supplements. 2: 1-12 (2010)

    CAS  Google Scholar 

  • Mayta-Apaza AC, Pottgen E, De Bodt J, Papp N, Marasini D, Howard L, Abranko L, Van de Wiele T, Lee S.-O, Carbonero F. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. Journal of Nutritional Biochemistry. 59: 160-172 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Mestecky J, McGhee R. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Advances in Immunology. 40: 153-245 (1987)

    Article  CAS  PubMed  Google Scholar 

  • Milner JA. Reducing the risk of cancer. In functional foods: designer foods, pharmafoods, nutraceuticals; Goldberg, I, Ed.; Chapman & Hall: New York, NY, USA, pp. 39–70 (1994)

  • Mkaddem SB, Christou I, Rossato E, Berthelot L, Lehuen A, Monteiro RC. IgA, IgA receptors, and their anti-inflammatory properties. Current Topics in Microbiology and Immunology. 382: 221-235 (2014)

    PubMed  Google Scholar 

  • Mojzer EB, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 21: 901 (2016)

    Article  CAS  Google Scholar 

  • Mora JR, von Andrian UH. Differentiation and homing of IgA-secreting cells. Mucosal Immunology. 1: 96-102 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Indias I, Sánchez-Alcoholado L, Pérez-Martínez P, Andrés-Lacueva C, Cardona F, Tinahones F, Queipo-Ortuño MI. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food & Function. 7: 1775-1787 (2016)

    Article  CAS  Google Scholar 

  • Mountzouris KC, McCartney AL, Gibson GR. Intestinal microflora of human infants and current trends for its nutritional modulation. British Journal of Nutrition. 87: 405-420 (2002)

    CAS  PubMed  Google Scholar 

  • Nagata R, Echizen M, Yamaguchi Y, Han KH, Shimada K, Ohba K, Kitano-Okada T, Nagura T, Uchino H, Fukushima M. Effect of a combination of inulin and polyphenol containing adzuki bean extract on intestinal fermentation in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry. 82: 489-496 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Negi PS, Jayaprakasha GK. Antibacterial activity of grapefruit (Citrus paradisi) peel extract. European Food Research and Technology. 213: 484-487 (2001)

    Article  CAS  Google Scholar 

  • Neyrinck AM, Catry E, Taminiau B, Cani PD, Bindels LB, Daube G, Dessy C, Delzenne NM. Chitin–glucan and pomegranate polyphenols improve endothelial dysfunction. Scientific Reports. 9: 14150 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients. 8: 552 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  • Okazaki Y, Han Y, Kayahara M, Watanabe T, Arishige H, Kato N. Consumption of curcumin elevates fecal immunoglobulin A, an index of intestinal immune function, in rats fed a high-fat diet. Journal of Nutritional Science and Vitaminology. 56: 68–71 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Ordaz, Wall-Medrano A, Goñi MG, Ramos-Clamont-Montfort G, Ayala-Zavala JF, González-Aguilar GA. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Letter in Applied Microbiology. 66: 25–31 (2018)

  • Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytotherapy Research. 29: 323-331 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Parkar SG, Trower TM, Stevenson DE. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe. 23: 12-19 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Patterson E, Cryan JF, Fitzgerald GF, Ross RP, Dinan TG, Stanton C. Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society. 73: 477-489 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Paul S, DeCastro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Suh N. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the β-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis. 31: 1272-1278 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GM, Schütte A, van der Post S, Svensson F, Rodríguez-Piñeiro AM, Nyström EE, Wising C, Johansson ME, Hansson GC. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews. 260: 8-20 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 118: 511-521 (2006)

    Article  PubMed  Google Scholar 

  • Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran L, Mi J, Lu L, Zhang Z, Li X, Zeng X, Cao Y. Gut microbiota modulation and anti-inflamatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radical Biology & Medicine. 136: 96-108 (2019a)

    Article  CAS  Google Scholar 

  • Peng Y, Yan Y, Wan P, Dong W, Huang K, Ran L, Mi J, Lu L, Zeng X, Cao Y. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Research International. 130: 108952 (2019b)

    Article  PubMed  CAS  Google Scholar 

  • Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, Matteuzzi D, Rossi M. In vitro comparison of the prebiotic effect of two inulin-type fructans. Anaerobe. 14: 280-286 (2008)

    Article  PubMed  CAS  Google Scholar 

  • Potì F, Santi D, Spaggiari G, Zimetti F, Zanotti I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: a review and meta-analysis. International Journal of Molecular Sciences. 20: 351 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  • Rahman Mazumder MA, Hongsprabhas P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: a review. Biomedicine & Pharmacotherapy. 82: 379-392 (2016)

    Article  CAS  Google Scholar 

  • Robles Alonso V, Guarner F. Linking the gut microbiota to human health, British Journal Nutrition. 109: 21-26 (2013)

    Article  CAS  Google Scholar 

  • Rodríguez-Daza MC, Daoust L, Boutkrabt L, Pilon G, Varin T, Dudonné S, Levy É, Marette A, Roy D, Desjardins Y. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Scientific Reports. 10: 2217 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Ramiro I, Ramos S, López-Oliva E, Agis-Torres A, Bravo L, Goya L, Martín MA. Cocoa polyphenols prevent inflammation in the colon of azoxymethane-treated rats and in TNF-α-stimulated Caco-2 cells. British Journal of Nutrition. 110: 206-215 (2013)

    Article  PubMed  CAS  Google Scholar 

  • Rosillo MA, Sanchez-Hidalgo M, Cardeno A, Alarcon de la Lastra C. Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochemical Pharmacology. 82: 737–745 (2011)

  • Rozès N, Peres C. Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Applied Microbiology and Biotechnology. 49: 108-111 (1998)

    Article  Google Scholar 

  • Saarela M, Lähteenmäki L, Crittenden R, Salminen S, MattilaSandholm T. Gut bacteria and health foods—the European perspective. International Journal Food Microbiology. 78: 99-117 (2002)

    Article  CAS  Google Scholar 

  • Sahpazidou D, Geromichalos GD, Stagos D, Apostolou A, Haroutounia, SA, Tsatsakis AM, Tzanakakis GN, Hayes AW, Kouretas D. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicology Letters. 230: 218-224 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Setoyama H. Local stimulatory effect of short chain fatty acids on the mucus release from the hindgut mucosa of rats (Rattus norvegicus). Comparative Biochemistry & Physiology. 111: 429-432 (1995)

    Article  CAS  Google Scholar 

  • Salih AG, Le Quéré JM, Drilleau JF. Action of free and esterified hydroxycinnamic acids on the growth of lactic acid bacteria. Food Science (Action des acides hydroxycinnamiques libres et esterifies sur la croissance des bactéries lactiques. Sciences des Aliments, in French). 20: 537–560 (2000)

  • Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven-year-old children. Gut. 53: 1388-1389 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz ML, Côté GL, Gibson GR, Rastall RA. Prebiotic properties of alternansucrase maltose-acceptor oligosaccharides. Journal of Agricultural and Food Chemistry. 53: 5911-5916 (2005a)

    Article  CAS  PubMed  Google Scholar 

  • Sanz ML, Polemis N, Morale V, Corzo N, Drakoularakou A, Gibson GR, Rastall RA. In vitro investigation into the potential prebiotic activity of honey oligosaccharides Journal of Agricultural and Food Chemistry. 53: 2914-2921 (2005b)

    CAS  PubMed  Google Scholar 

  • Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 30: 3875-3883 (1991)

    Article  CAS  Google Scholar 

  • Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. Journal of Nutrition. 130: 2073S-2085S (2000)

    Article  CAS  PubMed  Google Scholar 

  • Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. Journal of Agriculture and Food Chemistry. 57: 6485-6501 (2009)

    Article  CAS  Google Scholar 

  • Serra G, Incani A, Serreli G, Porru L, Melis MP, Tuberoso CI, Deiana M. Olive oil polyphenols reduce oxysterols-induced redox imbalance and pro-inflammatory response in intestinal cells. Redox Biology. 17: 348-354 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comparative Biochemistry & Physiology. 125: 525-531 (2000)

    Article  CAS  Google Scholar 

  • Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 535: 56-64 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szliszka E, Krol W. The role of dietary polyphenols in tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis for cancer chemoprevention. European Journal of Cancer Prevention. 20: 63-69 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Taira T, Yamaguchi S, Takahashi A, Okazaki Y, Yamaguchi A, Sakaguchi H, Chiji H. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. Journal of Clinical Biochemistry and Nutrition. 57: 212-216 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe H, Morita T, Sugiyama K, Kiriyama S. Dietary high-amylose cornstarch enhances mucin and immunoglobulin A secretions in rat gastrointestinal tract. Journal of Japanese Association of Dietary Fiber Research. 8: 31-42 (2004)

    Google Scholar 

  • Tangney CC, Rasmussen HE. Polyphenols, inflammation, and cardiovascular disease. Current Atherosclerosis Reports. 15: 324 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomás-Barberán FA, Espin JC. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science Food and Agriculture. 81: 853-876 (2000)

    Article  Google Scholar 

  • Tzounis X, Vulevic J, Kuhnle GG, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JP. Flavanol monomer-induced changes to the human faecal microflora. British Journal Nutrition. 99: 782-792 (2008)

    Article  CAS  Google Scholar 

  • Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. American Journal of Clinical Nutrition. 93: 62-72 (2010)

    Article  PubMed  CAS  Google Scholar 

  • Vaiserman AM, Koliada AK, Marotta F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Research Reviews 35: 36-45 (2017)

    Article  CAS  PubMed  Google Scholar 

  • van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology. 102: 452-460 (2007)

    PubMed  Google Scholar 

  • Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. Journal of American Society of Nephrology. 25: 1897-1907 (2014)

    Article  CAS  Google Scholar 

  • Venancio VP, Cipriano PA, Kim H, Antunes LM, Talcott ST, Mertens-Talcott SU. Cocoplum (Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food & Function. 8: 307–314 (2017)

  • Vinson JA, Su X, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: fruits. Journal of Agriculture and Food Chemistry. 49: 5315-5321 (2001)

    Article  CAS  Google Scholar 

  • Vo Ngoc DT, Krist L, van Overveld FJ, Rijkers GT. The long and winding road to IgA deficiency: causes and consequences. Expert Review of Clinical Immunology. 13: 371-382 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Wallace AJ, Eady SL, Hunter DC, Skinner MA, Huffman L, Ansell J, Blatchford P, Wohlers M, Herath TD, Hedderley D, Rosendale D, Stoklosinski H, McGhie T, Sun-Waterhouse D, Redman C. No difference in fecal levels of bacteria or short chain fatty acids in humans, when consuming fruit juice beverages containing fruit fiber, fruit polyphenols, and their combination. Nutrition Research. 35: 23-34 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tang L, Wang JS. Biomarkers of dietary polyphenols in cancer studies: current evidence and beyond. Oxidative Medicine and Cellular Longevity. 2015: 732302 (2015)

  • Wells JM, Rossi O, Meijerink M, van Baarlenf P. Epithelial crosstalk at the microbiota-mucosal interface. Proceedings of the National Academy of Sciences of the United States of America. 108: 4607-4614 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Williams AR, Krych L, Ahmad HF, Nejsum P, Skovgaard K, Nielsen DS, Thamsborg SM. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS ONE. 12: e0186546 (2017)

  • Windey K, Preter D, Verbeke K. Relevance of protein fermentation to gut health. Molecular Nutrition & Food Research. 56: 184-196 (2012)

    Article  CAS  Google Scholar 

  • Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology. 40: 235-243 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Woof JM, Mestecky J. Mucosal immunoglobulins. Immunological Reviews. 206: 64-82 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Song M, Cai X, Neto C, Tata A, Han Y, Xiao H. Chemopreventive effects of whole cranberry (Vaccinium macrocarpon) on colitis-associated colon tumorigenesis. Molecular Nutrition & Food Research. 62: 1800942 (2018)

    Article  CAS  Google Scholar 

  • Xiao J, Högger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Current Medicinal Chemistry. 22: 23-38 (2015)

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Gordon JI. Inaugural Article: honor thy symbionts. Proceedings of the National Academy of Sciences of the United States of America. 100: 10452-10459 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakoshi J, Tokutake S, Kikuchi M, Kubota Y, Konishi H, Mitsuoka T. Effect of proantocyanidin-rich extract from grape seed on human fecal flora and fecal odor. FASEB Journal. 15: 633 (2001)

    Google Scholar 

  • Yazdani R, Azizi G, Abolhassani H, Aghamohammadi A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scandinavian Journal of Immunology. 85: 3-12 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Zduńczyk Z, Juśkiewicz J, Estrella I. Cecal parameters of rats fed diets containing grapefruit polyphenols and inulin as single supplements or in a combination. Nutrition. 22: 898-904 (2006)

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science. 8: 33-42 (2016)

    Article  Google Scholar 

  • Zhao J, Zhang X, Liu H, Brown MA, Qiao S. Dietary protein and gut microbiota composition and function. Current Protein & Peptide Science. 20: 145-154 (2019)

    Article  CAS  Google Scholar 

  • Zhou Y, Zheng J, Li Y, Xu D, Li S, Chen Y, Li H. Natural polyphenols for prevention and treatment of cancer. Nutrients. 8: 515 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  • Zhu X, Zhang X, Sun Y, Su D, Sun Y, Hu B, Zeng X. Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota. Journal of Agricultural and Food Chemistry. 61: 1868-1877 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Ho Han.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was written by extracting part of first author's doctoral thesis (Obihiro University of Agriculture and Veterinary Medicine, 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilua, A., Nagata, R., Han, KH. et al. Beneficial health effects of polyphenols metabolized by fermentation. Food Sci Biotechnol 31, 1027–1040 (2022). https://doi.org/10.1007/s10068-022-01112-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01112-0

Keywords

Navigation