Skip to main content
Log in

Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. Food-derived polyphenols with such antibacterial activity are natural preservatives and can be used as an alternative to synthetic preservatives that can cause side effects, such as allergies, asthma, skin irritation, and cancer. Studies have reported that polyphenols have positive effects, such as decreasing harmful bacteria and increasing beneficial bacteria in the human gut microbiota. Polyphenols can also be used as natural antibacterial agents in food packaging system in the form of emitting sachets, absorbent pads, and edible coatings. We summarized the antibacterial activities, mechanisms and applications of polyphenols as antibacterial agents against foodborne bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam K, Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. Journal of Agricultural and Food Chemistry. 46: 1739-1745 (1998)

    Article  CAS  Google Scholar 

  • Addis M, Sisay D. A review on major food borne bacterial illnesses. Journal of Tropical Diseases. 3: 4 (2015)

    Google Scholar 

  • Aderogba MA, Ndhlala AR, Rengasamy KR, Van Staden J. Antibacterial and selected in vitro enzyme inhibitory effects of leaf extracts, flavonols and indole alkaloids isolated from Croton menyharthii. Molecules. 18: 12633–12644 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 18: 75–81 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SA, Hanif S, Iftkhar T. Phytochemical profiling with antioxidant and antibacterial screening of Amaranthus viridis L. leaf and seed extracts. Open Journal of Medical Microbiology. 3: 164–171 (2013)

    Article  CAS  Google Scholar 

  • Akinwumi BC, Bordun KM, Anderson HD. Biological activities of stilbenoids. International Journal of Molecular Sciences. 19: 792 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  • Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 146: 1564–1572 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Aravind SM, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenol on gut microbiota, their metabolites and health benefits. Food Research International. 142: 110189 (2021)

    Article  CAS  Google Scholar 

  • Arcan I, Yemenicioğlu A. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Research International. 44: 550–556 (2011)

    Article  CAS  Google Scholar 

  • Baek JH, Lee SY, Oh SW. Enhancing safety and quality of shrimp by nanoparticles of sodium alginate-based edible coating containing grapefruit seed extract. International Journal of Biological Macromolecules. 189: 84–90 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Borges A, Saavedra MJ, Simões M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling. 28: 755–767 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Borges A, Ferreira C, Saavedra MJ, Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance. 19: 256–65 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Boudjemaa, H. Antibacterial activity of ethyl acetate extracts from algerian Cupressus sempervirens var against some human pathogens bacteria. Algerian journal of natural products. 5(3): 524–529 (2017)

    Google Scholar 

  • Brown AK, Papaemmanouil A, Bhowruth V, Bhatt A, Dover LG, Besra GS. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. Microbiology. 153: 3314–3322 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski K, Maldonado-Alvarez L. Polyphenol-protein complexes and their consequences for the redox activity, structure and function of honey. A current view and new hypothesis-a review. Polish Journal of Food and Nutrition Sciences. 65: 71–80 (2015)

    Article  CAS  Google Scholar 

  • Buzzini P, Turchetti B, Ieri F, Goretti M, Branda E, Mulinacci N, Romani A. Catechins and proanthocyanidins: naturally occurring O-heterocycles with antibacterial activity. Bioactive Heterocycles IV. 239–263 (2007)

  • Byerley LO, Samuelson D, Blanchard E, Luo M, Lorenzen BN, Banks S, Ponder MA, Welsh DA, Taylor CM. Changes in the gut microbial communities following addition of walnuts to the diet. The Journal of Nutritional Biochemistry. 48: 94–102 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenol on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry. 24: 1415–1422 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Cho HS, Lee JH, Cho MH, Lee J. Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling. 31(1): 1–11 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Cho JJ, Kim HS, Kim CH, Cho SJ. Interaction with polyphenols and antibiotics. Journal of Life Science. 27: 476–481 (2017)

    Article  Google Scholar 

  • Choy YY, Quifer-Rada P, Holstege DM, Frese SA, Calvert CC, Mills DA, Lamuela-Raventos RM, Waterhouse AL. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food and Function. 5: 2298–2308 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Chung KT, Stevens SE Jr, Lin WF, Wei CI. Growth inhibition of selected food‐borne bacteria by tannic acid, propyl gallate and related compounds. Letters in Applied Microbiology. 17: 29–32 (1993)

    Article  CAS  Google Scholar 

  • Cueva C, Moreno-Arribas MV, Martinez-Alvarez PJ, Bills G, Vicente MF, Basilio A, Lopez Rivas C, Requena T, Rodríguez JM, Bartolomé B. Antibacterial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research Microbiology. 16: 372–382 (2010)

    Article  CAS  Google Scholar 

  • Cushnie TPT, Lamb AJ. Antibacterial activity of flavonoids. International Journal of Antimicrobial Agents 26(5): 343–356 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushnie TPT, Lamb AJ. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. Journal of Ethnopharmacology 101: 243–248 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TPT, Hamilton VE, Lamb AJ. Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiological Research. 158: 281–289 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Cvetnić Z, Vladimir-Knežević S. Antibacterial activity of grapefruit seed and pulp ethanolic extract. Acta Pharmaceutica. 54: 243–250 (2004)

    PubMed  Google Scholar 

  • Daglia M. Polyphenol as antibacterial agents. Current Opinion in Biotechnology. 23: 174–181 (2012)

    Article  CAS  PubMed  Google Scholar 

  • de Azeredo HMC. Antibacterial nanostructures in food packaging. Trends in Food Science & Technology 30: 56–69 (2013)

    Article  CAS  Google Scholar 

  • de Camargo AC, Regitano-d'Arce MAB, Rasera GB, Canniatti-Brazaca SG, do Prado-Silva L, Alvarenga VO, Sant’Ana AS, Shahidi F. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antibacterial effects. Food Chemistry. 237: 538–544 (2017)

    Article  PubMed  CAS  Google Scholar 

  • Dhalaria R, Verma R, Kumar D, Puri S, Tapwal A, Kumar V, Puri S, Tapwai A, Kumar V, Nepovimova E, Kuca, K. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants. 9(11): 1123 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Díaz-Gómez R, Toledo-Araya H, López-Solís R, Obreque-Slier E. Combined effect of gallic acid and catechin against Escherichia coli. LWT-Food Science and Technology. 59: 896–900 (2014)

    Article  CAS  Google Scholar 

  • Epstein W. The roles and regulation of potassium in bacteria. Progress in Nucleic Acid Research and Molecular Biology. 75: 293–320 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Eydelnant IA, Tufenkji N. Cranberry derived proanthocyanidins reduce bacterial adhesion to selected biomaterials. Langmuir. 24: 10273–10281 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Henika PR, Levin CE, Mandrell RE, Kozukue N. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. Journal of Food Protection. 69: 354–361 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Tsuno H, Nakayama J. Fermented papaya preparation restores age-related reductions in peripheral blood mononuclear cell cytolytic activity in tube-fed patients. PLOS ONE 12: e0169240 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galiè S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology. 9: 898 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Godos J, Caraci F, Micek A, Castellano S, D’Amico E, Paladino N, Ferri R. Galvano F. Grosso G. Dietary phenolic acids and their major food sources are associated with cognitive status in older italian adults. antioxidants. 10: 700 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Estaca J, López-de-Dicastillo C, Hernández-Muñoz P, Catalá R, Gavara R. Advances in antioxidant active food packaging. Trends in Food Science and Technology. 35: 42–51 (2014)

    Article  CAS  Google Scholar 

  • Gowd V, Karim N, Shishir MRI, Xie L, Chen W. Dietary polyphenol to combat the metabolic diseases via altering gut microbiota. Trends in Food Science and Technology. 93: 81–93 (2019)

    Article  CAS  Google Scholar 

  • Gradišar H, Pristovšek P, Plaper A, Jerala R. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. Journal of Medicinal Chemistry. 50: 264–271 (2007)

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Xiong H, Wang X, Jiang L, Yu N, Hu Z, Sun Y, Tsao R. Phenolics of green pea (Pisum sativum L.) hulls, their plasma and urinary metabolites, bioavailability, and in vivo antioxidant activities in a rat model. Journal of Agricultural and Food Chemistry. 67: 11955–11968 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews. Microbiology. 2: 95–108 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Hanani ZAN, Yee FC, Nor-Khaizura MAR. Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antibacterial properties of fish gelatin films as active packaging. Food Hydrocolloids. 89: 253–259 (2019)

    Article  CAS  Google Scholar 

  • Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules. 109: 1095–1107 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Qian Y, Wei J, Zhou C. Polymeric antibacterial food packaging and its applications. Polymers. 11: 560 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Johnson BJ, Delehanty JB, Lin B, Ligler FS. Immobilized proanthocyanidins for the capture of bacterial lipopolysaccharides. Analytical Chemistry. 80: 2113–7 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Joseph, N., Mirelle, A. F. R., Matchawe, C., Patrice, D. N., & Josaphat, N. Evaluation of the antimicrobial activity of tannin extracted from the barks of Erythrophleum guineensis (Caesalpiniaceae). Journal of Pharmacognosy and Phytochemistry, 5(4): 287 (2016)

    Google Scholar 

  • Kang SS, Kim JG, Lee TH, Oh KB. Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biological and Pharmaceutical Bulletin. 29: 1751–1755 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Khokhani D, Zhang C, Li Y, Wang Q, Zeng Q, Yamazaki A, Hutchins W, Zhou SS, Chen X, Yang CH. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Applied and Environmental Microbiology. 79: 5424–5436 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TJ, Silva JL, Kim MK. Jung YS. Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chemistry. 118: 740–746 (2010)

    Article  CAS  Google Scholar 

  • Kumar H, Bhardwaj K, Cruz-Martins N, Nepovimova E, Oleksak P, Dhanjal, DS, Kuča K. Applications of fruit polyphenol and their functionalized nanoparticles against foodborne bacteria: a mini review. Molecules. 26: 3447 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KM, Kim WS, Lim J, Nam S, Youn MIN, Nam SW, Kim Y, Kim SH, Park W, Park S. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157: H7. Journal of Food Protection. 72: 325–331 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infection and Immunity. 79: 4819–4827 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin LG, Yang XZ, Tang CP, Ke CQ, Zhang JB, Ye Y. Antibacterial stilbenoids from the roots of Stemona tuberosa. Phytochemistry. 69: 457–463 (2008)

    Article  CAS  PubMed  Google Scholar 

  • López D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspectives in Biology. 2: a000398 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lou Z, Wang H, Rao S, Sun J, Ma C, Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control. 25: 550–554 (2012)

    Article  CAS  Google Scholar 

  • Majiduddin FK, Materon IC, Palzkill TG. Molecular analysis of beta-lactamase structure and function. International Journal of Medical Microbiology. 292: 127–137 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Makarewicz, M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants. 10: 188 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenol: food sources and bioavailability. The American Journal of Clinical Nutrition. 79: 727–747 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Martillanes S, Rocha-Pimienta J, Cabrera-Bañegil M, Martín-Vertedor D, Delgado-Adámez J. Application of phenolic compounds for food preservation: Food additive and active packaging. Phenolic compounds–biological activity. IntechOpen. pp. 39–58 (2017)

  • Mattio LM, Catinella G, Dallavalle S, Pinto A. Stilbenoids: A natural arsenal against bacterial pathogens. Antibiotics. 9: 336 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Merkl R, Hrádková I, Filip V, Šmidrkal J. Antibacterial and antioxidant properties of phenolic acids alkyl esters. Czech Journal of Food Sciences 28: 275–279 (2010)

    Article  CAS  Google Scholar 

  • Mickymaray S, Alfaiz F, Paramasivam A. Efficacy and mechanisms of flavonoids against the emerging opportunistic nontuberculous mycobacteria. Antibiotics. 9: 450 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Miranda M, Delatorre-Herrera J, Vega-Gálvez A, Jorquera E, Quispe-Fuentes I, Martínez EA. Antibacterial potential and phytochemical content of six diverse sources of quinoa seeds (Chenopodium quinoa Willd.). Agricultural Sciences. 5: 1015 (2014)

  • Morais CA, de Rosso VV, Estadella D, Pisani LP. Anthocyanins as inflammatory modulators and the role of the gut microbiota. The Journal of Nutritional Biochemistry. 33: 1–7 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Mori A, Nishino C, Enoki N, Tawata S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry. 26: 2231–2234 (1987)

    Article  CAS  Google Scholar 

  • Nazzaro F, Fratianni F, DeMartino L, Coppola R, DeFeo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451–1474 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neilson AP, Ferruzzi MG. Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa. Annual Review of Food Science and Technology. 2: 125–151 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Nitiema LW, Savadogo A, Simpore J, Dianou D, Traore AS. In vitro antibacterial activity of some phenolic compounds (coumarin and quercetin) against gastroenteritis bacterial strains. International Journal of Microbiology Research. 3(3): 183–187 (2012)

    Google Scholar 

  • Oblak M, Kotnik M, Solmajer T. Discovery and Development of ATPase inhibitors of DNA gyrase as antibacterial agents. Current Medicinal Chemistry. 14: 2033–2047 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Oliver SP. Foodborne pathogens and disease special issue on the national and international PulseNet network. Foodborne Pathogens and Disease. 16: 439–440 (2019)

    Article  PubMed  Google Scholar 

  • Olszewska MA, Gędas A, Simões M. Antibacterial polyphenol-rich extracts: Applications and limitations in the food industry. Food Research International. 134: 109214 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Oral N, Vatansever L, Sezer C, Aydın B, Güven A, Gülmez M, Başer KH, Kürkçüoğlu M. Effect of absorbent pads containing oregano essential oil on the shelf life extension of overwrap packed chicken drumsticks stored at four degrees Celsius. Poultry Science. 88: 1459–1465 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH. Trends in antibacterial food packaging systems: Emitting sachets and absorbent pads. Food Research International. 83: 60–73 (2016)

    Article  CAS  Google Scholar 

  • Ouattar B, Simard RE, Piett G, Bégin A, Holley RA. Inhibition of surface spoilage bacteria in processed meats by application of antibacterial films prepared with chitosan. International Journal of Food Microbiology. 62: 139–148 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Papuc C, Goran GV, Predescu CN, Nicorescu V, Stefan G. Plant polyphenol as antioxidant and antibacterial agents for shelf‐life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety. 16: 1243–1268 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Payne DE, Martin NR, Parzych KR, Rickard AH. Underwood A. Boles BR. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infection and Immunity. 81: 496–504 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaper A, Golob M, Hafner I, Oblak M, Solmajer T, Jerala R. Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications. 306: 530–536 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Pozuelo MJ, Agis‐Torres A, Hervert‐Hernández D, Elvira López‐Oliva M, Muñoz‐Martínez E, Rotger R, Goni I. Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum. Journal of Food Science. 77: H59–H62 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Puljula E, Walton G, Woodward MJ, Karonen M. Antimicrobial activities of ellagitannins against Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. Molecules. 25: 3714 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP. Food safety through natural antimicrobials. Antibiotics. 8: 208 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Roman MJ, Decker EA, Goddard JM. Biomimetic polyphenol coatings for antioxidant active packaging applications. Colloid and Interface Science Communications. 13: 10–13 (2016)

    Article  CAS  Google Scholar 

  • Sánchez‐Maldonado AF, Schieber A, Gänzle MG. Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of Applied Microbiology 111: 1176–1184 (2011)

    Article  PubMed  CAS  Google Scholar 

  • Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 30: 3875–3883 (1991)

    Article  CAS  Google Scholar 

  • Scalbert A, Morand C, Manach C, Rémésy C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy. 56: 276–282 (2002)

    Article  CAS  Google Scholar 

  • Silva RFM, Pogačnik L. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants. 9: 61 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • Spirig T, Weiner EM, Clubb RT. Sortase enzymes in Gram‐positive bacteria. Molecular Microbiology. 82: 1044–1059 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguri T, Tanaka T, Kouno I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biological and Pharmaceutical Bulletin. 29: 2226–2235 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Takó M, Kerekes EB, Zambrano C, Kotogán A, Papp T, Krisch J, Vágvölgyi C. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants. 9: 165 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  • Tombola F, Campello S, De Luca L, Ruggiero P, Del Giudice G, Papini E, Zoratti M. Plant polyphenol inhibit VacA, a toxin secreted by the gastric pathogen Helicobacter pylori. FEBS Letters. 543: 184–189 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Tsao R. Chemistry and biochemistry of dietary polyphenol. Nutrients. 2: 1231–1246 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M, TanakaT, Iinuma M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology. 50: 27–34 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang Y, Jia Y, Zhang M, Huang Y, Li C, Li K. Persimmon oligomeric proanthocyanidins exert antibacterial activity through damaging the cell membrane and disrupting the energy metabolism of Staphylococcus aureus ACS Food Science & Technology. 1: 35–44 (2020)

    Article  CAS  Google Scholar 

  • Xiao K, Zhang HJ, Xuan LJ, Zhang J, Xu YM, Bai DL. Stilbenoids: Chemistry and bioactivities. In Studies in Natural Products Chemistry. 34: 453–646 (2008)

    Article  CAS  Google Scholar 

  • Xie Y, Chen J, Xiao A, Liu L. Antibacterial activity of polyphenols: Structure-activity relationship and influence of hyperglycemic condition. Molecules. 22: 1913 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  • Xu X, Zhou XD., Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrobial Agents and Chemotherapy. 55: 1229–1236 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods in Molecular Biology. 1266: 29–53 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Xiao YY. Grape phytochemicals and associated health benefits. Critical Reviews in Food Science and Nutrition. 53: 1202–1225 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Yang XZ, Tang CP, Ye Y. Stilbenoids from Stemona japonica. Journal of Asian Natural Products Research. 8: 47–53 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Zarin MA, Wan HY, Isha A, Armania N. Antioxidant, antibacterial and cytotoxic potential of condensed tannins from Leucaena leucocephala hybrid-Rendang. Food Science and Human Wellness. 5: 65–75 (2016)

    Article  Google Scholar 

  • Zhang H, Tsao R. Dietary polyphenol, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science. 8: 33–42 (2016)

    Article  Google Scholar 

  • Zhang P, Cui W, Wang H, Du Y, Zhou Y. High–efficiency machine learning method for identifying foodborne disease outbreaks and confounding factors. foodborne pathogens and disease. Foodborne Pathogens and Disease. 18: 590–598 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. 46: 2266–2268 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01608201)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Wook Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, JY., Seo, YH. & Oh, SW. Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Sci Biotechnol 31, 985–997 (2022). https://doi.org/10.1007/s10068-022-01058-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01058-3

Keywords

Navigation