Skip to main content
Log in

Pressure moisture treatment and hydro-thermal treatment of starch

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Starch is often subjected to denaturation treatment to improve its useful properties and eliminate its shortcomings. Various methods have been developed to produce modified starches with different properties and for a variety of uses. Because physically modified starch can be produced without chemical substances or biological agents, the modification method is very simple and inexpensive, and the resulting material can be used as clean label starch. Among these physical modification technologies, heat moisture treatment (HMT) is a universally valid technology, but little is known about pressure moisture treatment (PMT)-related technology. Physical modification of starch using PMT results in new functions and value-added characteristics required by industry, and PMT has the potential to produce starch with new functions. In this paper, PMT-related technologies for physically modified starch, the difference between PMT and the hydro-thermal treatment, and clean label starch manufacturing using HMT and PMT were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham TE. Stabilization of paste viscosity of cassava starch by heat-moisture treatment. Starch/Starke. 45: 131-135 (1993)

  • Adebowale K, Lawal O. Effect of annealing and heat moisture conditioning on the physicochemical characteristics of Bambarra groundnut (Voandzeia subterranea) starch. Molecular Nutrition and Food Research. 46: 311-316 (2002)

    CAS  Google Scholar 

  • Adebowale K, Afolabi T, Olu-Owolabi B. Hydrothermal treatments of Finger millet (Eleusine coracana) starch. Food Hydrocolloids. 19: 974-983 (2005)

  • Adebowale KO, Henle T, Schwarzenbolz U, Doert T. Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch I: Heat moisture treatments and annealing. Food Hydrocolloids. 23: 1947-1957 (2009)

  • Ahmed J, Al-Attar H. Structural properties of high-pressure-treated chestnut flour dispersions. International Journal of Food Properties. 20: 766-778 (2017)

  • Ahmed J, Varshney SK, Ramaswamy HS. Effect of high pressure treatment on thermal and rheological properties of lentil flour slurry. LWT-Food Science and Technology. 42: 1538–1544 (2009)

  • Ahmed J, Thomas L, Taher A, Joseph A. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions. Carbohydrate Polymers. 152: 639-647 (2016)

  • Ahmed J, Thomas L, Arfat YA, Joseph A. Rheological, structural and functional properties of high-pressure treated quinoa starch in dispersions. Carbohydrate Polymers. 197: 649-657 (2018)

  • Alcázar-Alay SC, Meireles, MAA. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science Technology. 35: 215-236 (2015)

  • Ambigaipalan P, Hoover R, Donner E, Liu Q. Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chemistry. 143: 175-184 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Anderson AK, Guraya HS. Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches. Food Chemistry. 97: 318-323 (2006)

    Article  CAS  Google Scholar 

  • Ashwar, BA, Gani A, Wani IA, Shah A, Masoodi FA, Saxena DC. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocolloids. 56: 108-117 (2016)

    Article  CAS  Google Scholar 

  • Babu AS, Mohan RJ. Influence of prior pre-treatments on molecular structure and digestibility of succinylated foxtail millet starch. Food Chemistry. 295: 147-155 (2019)

    Article  Google Scholar 

  • Barua S, Srivastav P. Effect of heat-moisture treatment on resistant starch functional and thermal properties of mung bean (Vigna radiate) starch. Journal of Nutritional Health Food Engineering. 7: 00248 (2017)

  • Bauer B, Knorr D. The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinisation as pressure time temperature indicator for high hydrostatic pressure processing. Journal of Food Engineering. 68: 329-334 (2005)

    Article  Google Scholar 

  • Bauer BA, Wiehle T, Knorr D. Impact of high hydrostatic pressure treatment on the resistant starch content of wheat starch. Starch‐Stärke. 57: 124-133 (2005)

    Article  CAS  Google Scholar 

  • Benczedi D, Tomka I, Escher F. Thermodynamics of amorphous starch− water systems. 1. Volume fluctuations. Macromolecules. 31: 3055-3061 (1998)

    Article  CAS  Google Scholar 

  • Bet CD, De Oliveira CS, Colman TAD, Marinho MT, Lacerda LG, Ramos AP, Schnitzler E. Organic amaranth starch: a study of its technological properties after heat-moisture treatment. Food Chemistry. 264: 435-442 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Biliaderis CG, Page CM, Maurice TJ, Juliano BO. Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. Journal of Agricultural and Food Chemistry. 34: 6-14 (1986)

    Article  CAS  Google Scholar 

  • Błaszczak W, Fornal J, Kiseleva V, Yuryev V, Sergeev A, Sadowska, J. Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon VII starch blends. Carbohydrate Polymers. 68: 387-396 (2007)

    Article  Google Scholar 

  • Błaszczak W, Fornal J, Valverde S, Garrido L. Pressure-induced changes in the structure of corn starches with different amylose content. Carbohydrate Polymers. 61: 132-140 (2005a)

  • Błaszczak W, Valverde S, Fornal J. Effect of high pressure on the structure of potato starch. Carbohydrate Polymers. 59: 377-383 (2005b)

  • Brumovsky JO, Thompson DB. Production of boiling‐stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high‐amylose maize starch. Cereal Chemistry. 78: 680-689 (2001)

    Article  CAS  Google Scholar 

  • Butterworth PJ, Warren FJ, Ellis PR. Human α‐amylase and starch digestion: An interesting marriage. Starch‐Stärke. 63: 395-405 (2011)

    Article  CAS  Google Scholar 

  • Chen X, He X, Fu X, Huang Q. In vitro digestion and physicochemical properties of wheat starch/flour modified by heat-moisture treatment. Journal of Cereal Science. 63: 109-115 (2015)

    Article  CAS  Google Scholar 

  • Cheon K, Kim K, Ha Y, Baik M, Chang Y, Chang K. Effect of high pressure on the crystalline structure of waxy and non-waxy rice starch. Food Engineering Progress. 1: 184-191 (1997)

    Google Scholar 

  • Chung HJ, Liu Q, Hoover R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers. 75: 436-447 (2009)

    Article  CAS  Google Scholar 

  • Chung HJ, Liu Q, Hoover R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. International Food Research Journal. 43: 501-508 (2010)

  • Collado LS, Corke H. Heat-moisture treatment effects on sweet potato starches differing in amylose content. Food Chemistry. 65: 339-346 (1999)

    Article  CAS  Google Scholar 

  • Colussi R, Kaur L, Zavareze E, Dias ARG, Stewart R, Singh J. High pressure processing and retrogradation of potato starch: Influence on functional properties and gastro-small intestinal digestion in vitro. Food Hydrocolloids. 75: 131-137 (2018)

    Article  CAS  Google Scholar 

  • Deng Y, Jin Y, Luo Y, Zhong Y, Yue J, Song X, Zhao Y. Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules. Journal of Cereal Science. 60: 302-310 (2014)

    Article  CAS  Google Scholar 

  • Dias ARG, Zavareze E, Spier F, Castro LAS, Gutkoski LC. Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents. Food Chemistry. 123: 711-719 (2010)

    Article  CAS  Google Scholar 

  • Dupuis JH, Liu Q, Yada RY. Methodologies for increasing the resistant starch content of food starches: A review. Comprehensive Reviews in Food Science and Food Safety. 13: 1219-1234 (2014)

  • Franco CML, Ciacco CF, Tavares DQ. Effect of the heat-moisture treatment on the enzymatic susceptibility of corn starch granules. Starch/Stärke. 47: 223-228 (1995)

  • Gomes AMM, Silva CEM, Ricardo NMPS, Sasaki JM, Germani R. Impact of annealing on the physicochemical properties of unfermented cassava starch (polvilho doce). Starch/Stärke. 56, 419-423 (2004)

  • Gomes AM, Silva CEM, Ricardo NM. Effects of annealing on the physicochemical properties of fermented cassava starch (polvilho azedo). Carbohydrate Polymers. 60: 1-6 (2005)

  • Gunaratne A, Hoover R. Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers. 49: 425-437 (2002)

    Article  CAS  Google Scholar 

  • Guo Z, Zeng S, Lu X, Zhou M, Zheng M, Zheng B. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chemistry. 186: 223-230 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Güzel D, Sayar S. Digestion profiles and some physicochemical properties of native and modified borlotti bean, chickpea and white kidney bean starches. Food Research International. 43: 2132-2137 (2010)

  • Hoover R, Vasanthan T. The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches. Journal of Food Biochemistry. 17: 303-325 (1993)

    Article  Google Scholar 

  • Hoover R, Hughes T, Chung H, Liu Q. Composition, molecular structure, properties, and modification of pulse starches: A review. International Food Research Journal. 43: 399-413 (2010)

    Article  CAS  Google Scholar 

  • Hoover, R, Manuel, H. The effect of heat–moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. Journal of Cereal Science. 23: 153-162 (1996)

    Article  CAS  Google Scholar 

  • Hoover R, Vasanthan T. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydrate Resesrch. 252: 33-53 (1994)

    Article  CAS  Google Scholar 

  • Hoover R, Zhou Y. In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes-a review. Carbohydrate Polymers. 54: 401-417 (2003)

  • Hormdok R, Noomhorm A. Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT Food Science and Technology 40: 1723-1731 (2007)

    Article  CAS  Google Scholar 

  • Hu XP, Zhang B, Jin ZY, Xu XM, Chen HQ. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch. Food Chemistry. 232: 560-565 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Iuga M, Mironeasa SJC. A review of the hydrothermal treatments impact on starch based systems properties. Critical Reviews in Food Science and Nutrition. 60: 3890-3915 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Jacobs H, Delcour JA. Hydrothermal modifications of granular starch, with retention of the granular structure: A review. Journal of Agricultural and Food Chemistry. 46: 2895-2905 (1998)

    Article  CAS  Google Scholar 

  • Jacobs H, Eerlingen R, Clauwaert W, Delcour J. Influence of annealing on the pasting properties of starches from varying botanical sources. Cereal Chemistry. 72: 480-487 (1995)

  • Jacobs H, Eerlingen RC, Rouseu N, Colonna P, Delcour JA. Acid hydrolysis of native and annealed wheat, potato and pea starches-DSC melting features and chain length distributions of lintnerised starches. Carbohydrate Research. 308: 359-371 (1998)

    Article  CAS  Google Scholar 

  • Jayakody L, Hoover R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins–A review. Carbohydrate Polymers. 74: 691-703 (2008)

    Article  CAS  Google Scholar 

  • Jayakody L, Hoover R, Liu Q, Donner E. Studies on tuber starches III. Impact of annealing on the molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydrate Polymers. 76: 145-153 (2009)

  • Jayaprakasha H, Yoon Y, Brueckner H. Critical Aspects in Adoption of Ultra High Pressure Technology for Food Processing-An Overviews. Food Science and Animal Resources. 20: 44-55 (2000)

    Google Scholar 

  • Jeong D, Han JA, Liu Q, Chung HJ. Effect of processing, storage, and modification on in vitro starch digestion characteristics of food legumes: A review. Food Hydrocolloids. 90: 367-376 (2019)

    Article  CAS  Google Scholar 

  • Jiang B, Li W, Hu X, Wu J, Shen Q. Rheology of mung bean starch treated by high hydrostatic pressure. International Journal of Food Properties. 18: 81-92 (2015a)

  • Jiang B, Li W, Shen Q, Hu X, Wu J. Effects of high hydrostatic pressure on rheological properties of rice starch. International Journal of Food Properties. 18: 1334-1344 (2015b)

  • Kalichevsky M, Jaroszkiewicz E, Blanshard J. A study of the glass transition of amylopectin-sugar mixtures. Polymer. 34: 346-358 (1993)

    Article  CAS  Google Scholar 

  • Kaur B, Ariffin F, Bhat R, Karim A A. Progress in starch modification in the last decade. Food Hydrocolloids. 26: 398-404 (2012)

  • Kawai K, Fukami K, Yamamoto K. Effects of treatment pressure, holding time, and starch content on gelatinization and retrogradation properties of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydrate Polymers. 69: 590-596 (2007)

    Article  CAS  Google Scholar 

  • Kim MJ, Oh SG, Chung HJ. Impact of heat-moisture treatment applied to brown rice flour on the quality and digestibility characteristics of Korean rice cake. Food Science and Biotechnology. 26: 1579-1586 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiseleva VI, Genkina NK, Tester R, Wasserman LA, Popov AA, Yuryev VP. Annealing of normal, low and high amylose starches extracted from barley cultivars grown under different environmental conditions. Carbohydrate Polymers. 56: 157-168 (2004)

  • Kiseleva VI, Krivandin AV, Fornal J, Błaszczak W, Jeliński T, Yuryev VP. Annealing of normal and mutant wheat starches. LM, SEM, DSC, and SAXS studies. Carbohydrate Research. 340: 75-83 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Knorr D, Heinz V, Buckow R. High pressure application for food biopolymers. Biochimica et Biophysica Acta - Proteins and Proteomics. 1764: 619-631 (2006)

    Article  CAS  Google Scholar 

  • Kohyama K, Sasaki T. Differential scanning calorimetry and a model calculation of starches annealed at 20 and 50 °C. Carbohydrate Polymers. 63: 82-88 (2006)

  • Kutoš T, Golob T, Kač M, Plestenjak A. Dietary fibre content of dry and processed beans. Food Chemistry. 80: 231-235 (2003)

    Article  Google Scholar 

  • Kweon M, Haynes L, Slade L, Levine H. The effect of heat and moisture treatments on enzyme digestibility of AeWx, Aewx and aeWx corn starches. Journal of Thermal Analytical Calorimetry. 59: 571-586 (2000)

  • Lan H, Hoover R, Jayakody L, Liu Q, Donner E, Baga M, Asare E, Hucl P, Chibbar R. Impact of annealing on the molecular structure and physicochemical properties of normal, waxy and high amylose bread wheat starches. Food Chemistry. 111: 663-675 (2008)

    Article  CAS  Google Scholar 

  • Lawal O, Adebowale K. Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch. Carbohydrate Polymers. 60: 331-341 (2005)

  • Leite TS, Jesus ALT, Schmiele M, Tribst AA, Cristianini M. High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT Food Science and Technology. 76: 361-369 (2017)

    Article  CAS  Google Scholar 

  • Li G, Zhu F. Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chemistry. 241: 380-386 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Li SL, Gao QY. Effect of heat-moisture treatment on the formation and properties of resistant starches from mung bean (Phaseolus radiatus) starches. World Academy of Science, Engineering and Technology. 48: 812-819 (2010)

  • Li W, Bai Y, Mousaa SA, Zhang Q, Shen Q. Effect of high hydrostatic pressure on physicochemical and structural properties of rice starch. Food and Bioprocess Technology. 5: 2233-2241 (2012)

  • Li W, Gao J, Saleh AS, Tian X, Wang P, Jiang H, Zhang G. The modifications in physicochemical and functional properties of proso millet starch after ultra‐high pressure (UHP) process. Starch‐Stärke. 70: 1700235 (2018)

    Article  Google Scholar 

  • Li W, Tian X, Liu L, Wang P, Wu G, Zheng J, Ouyang S, Luo Q, Zhang G. High pressure induced gelatinization of red adzuki bean starch and its effects on starch physicochemical and structural properties. Food Hydrocolloids. 45: 132-139 (2015)

    Article  CAS  Google Scholar 

  • Li W, Zhang F, Liu P, Bai Y, Gao L, Shen Q. Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. Journal of Food Engineering. 103: 388-393 (2011)

  • Liu H, Fan H, Cao R, Blanchard C, Wang M. Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure. International Journal of Biological Macromolecules. 92: 753-760 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Guo X, Li Y, Li H, Fan H, Wang M. In vitro digestibility and changes in physicochemical and textural properties of tartary buckwheat starch under high hydrostatic pressure. Journal of Food Engineering. 189: 64-71 (2016)

    Article  CAS  Google Scholar 

  • Liu H, Wang L, Cao R, Fan H, Wang M. In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydrate Polymers. 144: 1-8 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yu L, Simon G, Dean K, Chen L. Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios. Carbohydrate Polymers. 77: 662-669 (2009)

    Article  CAS  Google Scholar 

  • Liu K, Zhang B, Chen L, Li X, Zheng B. Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment. Food Chemistry. 271: 102-108 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Gu J, Cao J, Tan H, Zhang Y. Effect of annealing on the thermal properties of poly (lactic acid)/starch blends. International Journal of Biological Macromolecules. 74: 297-303 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Maache-Rezzoug Z, Zarguili I, Loisel C, Queveau D, Buleon A. (2008) Structural modifications and thermal transitions of standard maize starch after DIC hydrothermal treatment. Carbohydrate Polymers. 74: 802-812 (2008)

    Article  CAS  Google Scholar 

  • Martens BM, Gerrits WJ, Bruininx EM, Schols HA. Amylopectin structure and crystallinity explains variation in digestion kinetics of starches across botanic sources in an in vitro pig model. Journal of Animal Science and Biotechnology. 9: 1-13 (2018)

  • Mathobo VM, Silungwe H, Ramashia SE, Anyasi TA. Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches-a review. Journal of Food Science and Technology. 58: 1-15 (2020)

  • Miyazaki M, Morita N. Effect of heat-moisture treated maize starch on the properties of dough and bread. Food Research International. 38: 369-376 (2005)

  • Mizuno A, Mitsuiki M, Motoki M. (1998). Effect of crystallinity on the glass transition temperature of starch. Journal of Agricultural and Food Chemistry. 46: 98-103 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Morrisin WR, Tester RF, Snape CE, Law R, Gidley MJ. Swelling and gelatinization of cereal starches. IV: some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chemistry. 70: 385-391 (1993)

    Google Scholar 

  • Muhr A, Blanshard J. Effect of hydrostatic pressure on starch gelatinisation. Carbohydrate Polymers. 2: 61-74 (1982)

    Article  CAS  Google Scholar 

  • Nakazawa Y, Wang YJ. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins. Carbohydrate Research. 338: 2871-2882 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Nasehi B, Javaheri S. Application of high hydrostatic pressure in modifying functional properties of starches: a review. Middle-East Journal of Scientific Research. 11: 856-861 (2012)

  • O’Brien S, Wang YJ. Susceptibility of annealed starches to hydrolysis by α-amylase and glucoamylase. Carbohydrate Polymers. 72: 597-607 (2008)

    Article  Google Scholar 

  • Oh H, Pinder D, Hemar Y, Anema S, Wong M. Effect of high-pressure treatment on various starch-in-water suspensions. Food Hydrocolloids. 22: 150-155 (2008)

    Article  CAS  Google Scholar 

  • Oh SM, Lee BH, Seo DH, Choi HW, Kim BY, Baik MY. Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans. Food Science and Biotechnology. 29: 585-598 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olayinka OO, Adebowale KO, Olu-Owolabi BI. Effect of heat-moisture treatment on physicochemical properties of white sorghum starch. Food Hydrocolloids. 22: 225-230 (2008)

    Article  CAS  Google Scholar 

  • Ortega‐Ojeda FE, Eliasson AC. Gelatinisation and retrogradation behaviour of some starch mixtures. Starch‐Stärke. 53: 520-529 (2001)

    Article  CAS  Google Scholar 

  • Pei‐Ling L, Xiao‐Song H, Qun S. Effect of high hydrostatic pressure on starches: A review. Starch‐Stärke. 62: 615-628 (2010)

    Article  Google Scholar 

  • Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch‐Stärke. 62: 389-420 (2010)

    Article  Google Scholar 

  • Piecyk M, Drużyńska B, Ołtarzewska A, Wołosiak R, Worobiej E, Ostrowska-Ligęza E. Effect of hydrothermal modifications on properties and digestibility of grass pea starch. International Journal of Biological Macromolecules. 118: 2113-2120 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Pinto VZ, Vanier NL, Klein B, Zavareze ER, Elias MC, Gutkoski LC, Helbig E, Dias ARG. Physicochemical, crystallinity, pasting and thermal properties of heat‐moisture‐treated pinhão starch. Starch‐Stärke. 64: 855-863 (2012)

    Article  CAS  Google Scholar 

  • Pomeranz, Y. Research and development regarding enzyme-resistant starch (RS) in the USA: a review. European Journal of Clinical Nutrition. 46: 63-68 (1992)

  • Pukkahuta C, Varavinit S. Structural transformation of sago starch by heat-moisture and osmotic-pressure treatment. Starch/Stärke. 59: 624-631 (2007)

  • Pukkahuta C, Suwannawat B, Shobsngob S, Varavinit S. Comparative study of pasting and thermal transition characteristics of osmotic pressure and heat-moisture treated corn starch. Carbohydrate Polymers. 72: 527-536 (2008)

  • Qi X, Tester RF, Snape CE, Ansell R. The effect of annealing on structure and gelatinization of maize starches with amylose dosage series. Progress in Food Biopolymers Research. 1(1): 1-27 (2005)

  • Roman L, Martinez MM. Structural basis of resistant starch (RS) in bread: Natural and commercial alternatives. Foods. 8: 267 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Ruiiz E, Srikaeo K, Revilla LS. Effects of heat moisture treatment on physicochemical properties and starch digestibility of rice flours differing in amylose content. Food and Applied Bioscience. 6: 140-153 (2018)

    Google Scholar 

  • Sarko A, Wu HC. The crystal structures of A‐, B‐and C‐polymorphs of amylose and starch. Starch‐Stärke. 30: 73-78 (1978)

    Article  CAS  Google Scholar 

  • Sasaki T, Matsuki J. Effect of wheat starch structure on swelling power. Cereal Chemistry. 75: 525-529 (1998)

    Article  CAS  Google Scholar 

  • Serrano P, Franco C. Modificação hidrotérmica (“annealing”) e hidrólise enzimática do amido de mandioca. Brazilian Journal of Food Technology. 8: 220-232 (2005)

    CAS  Google Scholar 

  • Sharma M, Yadav DN, Singh AK, Tomar SK. Effect of heat-moisture treatment on resistant starch content as well as heat and shear stability of pearl millet starch. Agricultural Research. 4: 411-419 (2015)

  • Silva WMF, Biduski B, Lima KO, Pinto VZ, Hoffmann JF, Vanier NL, Dias ARG. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment. Food Chemistry. 219: 260-267 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Singh GD, Bawa AS, Riar CS, Saxena DC. Influence of heat-moisture treatment and acid modifications on physicochemical, rheological, thermal and morphological characteristics of Indian water chestnut (Trapa natans) starch and its application in biodegradable films. Starch/Stärke. 61: 503-513 (2009)

  • Song MR, Choi SH, Kim HS, Kim BY, Baik MY. Efficiency of high hydrostatic pressure in preparing amorphous granular starches. Starch‐Stärke. 67: 790-801 (2015)

    Article  CAS  Google Scholar 

  • Stolt M, Oinonen S, Autio K. Effect of high pressure on the physical properties of barley starch. Innovative Food Science and Emerging Technology. 1: 167-175 (2000)

    Article  CAS  Google Scholar 

  • Stute R. Hydrothermal modification of starches: The difference between annealing and heat/moisture‐treatment. Starch‐Stärke. 44: 205-214 (1992)

    Article  CAS  Google Scholar 

  • Stute R, Klingler R, Boguslawski S, Eshtiaghi M, Knorr D. Effects of high pressures treatment on starches. Starch‐Stärke. 48: 399-408 (1996)

    Article  CAS  Google Scholar 

  • Sui Z, Kong X. Physical modifications of starch. Springer, Singapore. pp. 1-174 (2018)

  • Sui Z, Shah A, BeMiller JN. Crosslinked and stabilized in-kernel heat-moisture-treated and temperature-cycled normal maize starch and effects of reaction conditions on starch properties. Carbohydrate Polymers. 86: 1461-1467 (2011)

    Article  CAS  Google Scholar 

  • Tester RF, Debon SJ. Annealing of starch-a review. International Journal of Biological Macromolecules. 27: 1-12 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry. 67: 551-557 (1990)

    CAS  Google Scholar 

  • Tester RF, Debon SJJ, Sommerville MD. Annealing of maize starch. Carbohydrate Polymers. 42: 287-299 (2000)

  • Tomasik P. Starch: Progress in structural studies, modifications and applications. Polish Society of Food Technologist's, Małopolska Branch. (2004)

  • Trung PTB, Ngoc LBB, Hoa PN, Tien NNT, Van Hung P. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. International Journal of Biological Macromolecules. 105: 1071-1078 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Vallons KJ, Arendt EK. Effects of high pressure and temperature on the structural and rheological properties of sorghum starch. Innovative Food Science and Emerging Technology. 10: 449-456 (2009)

    Article  CAS  Google Scholar 

  • Varatharajan V, Hoover R, Liu Q, Seetharaman K. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydrate Polymers. 81: 466-475 (2010)

  • Vermeylen R, Goderis B, Delcour JA. An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers. 64: 364-375 (2006)

    Article  CAS  Google Scholar 

  • Vieira FC, Sarmento SBS. Heat-moisture treatment and enzymatic digestibility of Peruvian carrot, sweet potato and ginger starches. Starch/Stärke. 60: 223-232 (2008)

  • Vittadini E, Carini E, Chiavaro E, Rovere P, Barbanti D. High pressure induced tapioca starch gels: Physico-chemical characterization and stability. European Food Research and Technology. 226: 889-896 (2008)

  • Waduge R, Hoover R, Vasanthan T, Gao J, Li J. Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Resesrch International. 39: 59-77 (2006)

    Article  CAS  Google Scholar 

  • Waigh TA, Kato KL, Donald AM, Gidley MJ, Clarke CJ, Riekel C. Side‐chain liquid‐crystalline model for starch. Starch‐Stärke. 52: 450-460 (2000)

    Article  CAS  Google Scholar 

  • Wang H, Liu Y, Chen L, Li X, Wang J, Xie F. Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch. Food Chemistry. 242: 323-329 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang B, Chen L, Li X. Understanding the structure and digestibility of heat-moisture treated starch. International Journal of Biological Macromolecules. 88: 1-8 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Henry R. J, Gilbert RG. Causal relations among starch biosynthesis, structure, and properties. Springer Science Reviews, 2: 15-33 (2014).

    Article  Google Scholar 

  • Wang W, Powell A, Oates C. Effect of annealing on the hydrolysis of sago starch granules. Carbohydrate Polymers. 33: 195-202 (1997)

    Article  CAS  Google Scholar 

  • Watcharatewinkul Y, Puttanlek C, Rungsardthong V, Uttapap D. Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics. Carbohydrate Polymers. 75: 505-511 (2009)

    Article  CAS  Google Scholar 

  • Yao T, Sui Z, Janaswamy S. Annealing.Vol. 3, pp. 37-49. In: Physical modifications of starch. Sui Z, Kong X (ed). Singapore (2018)

  • Ye J, Hu X, Luo S, McClements DJ, Liang L, Liu C. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Research International. 106: 404-409 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Yeum JH, Choi HW, Kim HY, Oh SM, Bae JE, Ye SJ, Baik MY. Effect of hydrothermal treatment on physicochemical properties of amorphous granular potato starch (AGPS). International Journal of Biological Macromolecules. 168: 816-822 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Zavareze E, Dias ARG. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers. 83: 317-328 (2011)

    Article  CAS  Google Scholar 

  • Zeleznak K, Hoseney R. The glass transition in starch. Cereal Chemistry. 64, 121-124 (1987)

  • Zhang J, Wang ZW, Shi XM. Effect of microwave heat/moisture treatment on physicochemical properties of canna edulis ker starch. Journal of the Science of Food & Agriculture. 89: 653-664 (2009)

  • Zheng Y, Wang Q, Li B, Lin L, Tundis R, Loizzo MR, Zheng B, Xiao J. Characterization and prebiotic effect of the resistant starch from purple sweet potato. Molecules. 21: 932 (2016)

    Article  PubMed Central  Google Scholar 

  • Zia D, Xiong H, Fei P. Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition. 57: 2691-2705 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2021R1A4A1023437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo-Yeol Baik.

Ethics declarations

Conflict of interest

None of the authors have conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HY., Baik, MY. Pressure moisture treatment and hydro-thermal treatment of starch. Food Sci Biotechnol 31, 261–274 (2022). https://doi.org/10.1007/s10068-021-01016-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-021-01016-5

Keywords

Navigation