Skip to main content

Hypolipidemic effect of soluble dietary fibers prepared from Asparagus officinalis and their effects on the modulation of intestinal microbiota

Abstract

The soluble dietary fiber from Asparagus officinalis (ASDF) was successively prepared using enzymolysis combined with spray-drying technology. High-performance liquid chromatography analysis showed that ASDF contained two polysaccharide fractions with the average molecular weight of 2.77 × 105 and 6.44 × 103 Da, and was composed of mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose with a molecular ratio of 19.93:1.02:1.94:32.17:1.00:1.91, respectively. ASDF showed potential in vitro antioxidant activities. The oral administration of ASDF significantly reduced the levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol in HD-induced mice serum. Furthermore, 16S rRNA gene sequencing analysis showed that ASDF significantly affected the composition of intestinal microbiota, especially reducing the Firmicutes/Bacteroidotetes ratio and the relative abundances of Desulfobacterota, Proteobacteria, Actinobacteriota and increasing that of Muribaculaceae, Bacteroides, and Alloprevotella. These results demonstrated that the intake of ASDF could regulate intestinal microbiota and serum lipid levels in hyperlipidemic conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Bitter T. A modified uronic acid carbazole reaction. Analytical Biochemistry. 4: 330-334 (1962)

    CAS  Article  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254 (1976)

    CAS  Article  Google Scholar 

  • Bhavnani BR, Cecutti A, Gerulath A, Woolever AC, Berco M. Comparison of the antioxidant effects of equine estrogens, red wine components, vitamin E, and probucol on low-density lipoprotein oxidation in postmenopausal women. Menopause. 25: 1214-1223 (2018)

    Article  Google Scholar 

  • Cao WX, Chin YX, Chen X, Mi Y, Xue CH, Wang YM, Tang QJ. The role of gut microbiota in the resistance to obesity in mice fed a high fat diet. International Journal of Food Sciences and Nutrition. 71: 453-463 (2020)

    CAS  Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28: 350-356 (1956)

    CAS  Article  Google Scholar 

  • Everard MA, Cani PD. Diabetes, obesity and gut microbiota. Best Practice & Research Clinical Gastroenterology. 27: 73-83 (2013)

    CAS  Article  Google Scholar 

  • Guo Q, Wang N, Liu H, Li Z, Lu L, Wang C. The bioactive compounds and biological functions of Asparagus officinalis L.-A review. Journal of Functional Foods. 65: 103727 (2020)

    Article  Google Scholar 

  • Guo WL, Deng JC, Pan YY, Xu JX, Hong JL, Shi FF, Liu GL, Qian MQ, Bai WD, Zhang W, Liu B, Zhang YY, Luo PJ, Ni L, Rao PF, Lv XC. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. International Journal Biological Macromolecules. 153: 1231-1240 (2020)

    CAS  Article  Google Scholar 

  • Huang Q, Zhang H, Xue D. Enhancement of the antioxidant and hypolipidemic activities of Puerariae radix by fermentation with Aspergillus niger. Food Science and Biotechnology. 28: 1117-1124 (2019)

    CAS  Article  Google Scholar 

  • Johnson, EL, Heaver, SL, Walters, WA, Ley, RE. Microbiome and metabolic disease: Revisiting the bacterial phylum Bacteroidetes. Journal of Molecular Medicine. 95: 1-8 (2017)

    CAS  Article  Google Scholar 

  • Jin MC, Qian ZY, Yin JY, Xu WT, Zhou X. The role of intestinal microbiota in cardiovascular disease. Journal of Cellular and Molecular Medicine. 23: 2343-2350 (2019)

    Article  Google Scholar 

  • Kim GB, Seo YM, Kim CH, Paik IK. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Science. 90: 75-82 (2011)

    CAS  Article  Google Scholar 

  • Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ, Osawa R. Age-related changes in the composition of gut Bifidobacterium species. Current Microbiology. 74: 987-995 (2017)

    CAS  Article  Google Scholar 

  • Lee JW, Lee JH, Yu IH, Gorinstein S, Bae JH, Ku YG. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L. Plant Foods for Human Nutrition. 69: 175-181 (2014)

    CAS  Article  Google Scholar 

  • Liu X, Zhang MS, Guo K, Jia AR, Shi YP, Gao GL, Sun ZL, Liu CH. Cellulase-assisted extraction, characterization, and bioactivity of polysaccharides from Polygonatum odoratum. International Journal Biological Macromolecules. 75: 258-265 (2015)

    CAS  Article  Google Scholar 

  • Li MM, Zhou Y, Zuo L, Nie D, Li XA. Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice. Nutrition. 81: 110959 (2020)

    Article  Google Scholar 

  • Li YQ, Ma QT, Wang JK, Li PF, Cheng L, An YC, Duan YH, Dai HY, Wang T, Zhao BS. Relationship between hyperlipidemia and the gut microbiome of rats, characterized using high-throughput sequencing. Journal of Traditional Chinese Medical Sciences. 7: 154-161 (2020)

    Article  Google Scholar 

  • Liu X, Sun Z, Jia A, Shi Y, Li R, Yang P. Extraction, preliminary characterization and evaluation of  in vitro antitumor and antioxidant activities of polysaccharides from Mentha piperita. International Journal of Molecular Sciences. 15: 16302–16319 (2014)

  • Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe. 23: 705-715 (2018)

    CAS  Article  Google Scholar 

  • Navar-Boggan AM, Peterson ED, Ralph B, D'Agostino RB, Benjamin N, Sniderman AD, Pencina MJ. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation. 131: 451-458 (2015)

    CAS  Article  Google Scholar 

  • Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology. 33: 496-503 (2015)

    CAS  Article  Google Scholar 

  • Terho TT, Hartiala K. Method for determination of the sulfate content of glycosaminoglycans. Analytical Biochemistry. 41: 471-476 (1971)

    CAS  Article  Google Scholar 

  • Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology. 141: 122-131 (2010)

    Article  Google Scholar 

  • Vázquez-Castilla S, De la Puerta R, Garcia-Gimenez MD, Fernández-Arche MA, Guillén-Bejarano R. Bioactive constituents from “Triguero” asparagus improve the plasma lipid profile and liver antioxidant status in hypercholesterolemic rats. International Journal of Molecular Sciences. 14: 21227-21239 (2013)

    Article  Google Scholar 

  • Veronese N, Solmi M, Caruso MG, Giannelli G, Osella AR, Evangelou E, Maggi S, Fontata L, Stubbs B, Tzoulaki I. Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses. The American Journal of Clinical Nutrition. 107: 436-444 (2018)

    Article  Google Scholar 

  • Wang MY, Zhang SF, Zhong RQ, Wan F, Chen L, Liu L, Yi B and Zhang HF. Olive fruit extracts supplement improve antioxidant capacity via altering colonic microbiota composition in mice. Frontiers in Nutrition. 8: 645099 (2021)

    Article  Google Scholar 

  • Zhao Q, Kennedy JF, Wang X, Yuan X, Zhao B, Peng Y, Huang Y. Optimization of ultrasonic circulating extraction of polysaccharides from Asparagus officinalis using response surface methodology. International Journal Biological Macromolecules. 49: 181–187 (2011)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work was supported financially by the National Key R&D Program of China (2018YFC0311206), Science, education and industry integration and innovation pilot project of Qilu University of Technology (2020KJC-ZD15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yao, M., Jia, A. et al. Hypolipidemic effect of soluble dietary fibers prepared from Asparagus officinalis and their effects on the modulation of intestinal microbiota. Food Sci Biotechnol 30, 1721–1731 (2021). https://doi.org/10.1007/s10068-021-01001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-021-01001-y

Keywords

  • Asparagus officinalis
  • Soluble dietary fiber
  • Monosaccharide composition
  • Hypolipidemic
  • Intestinal microbiota