Effects of pH and NaCl on hydrolysis and transpeptidation activities of a salt-tolerant γ-glutamyltranspeptidase from Bacillus amyloliquefaciens S0904

Abstract

Bacillus amyloliquefaciens S0904 was selected as a hyperproducer of a glutamine-hydrolyzing enzyme which was identified as a γ-glutamyltranspeptidase catalyzing both hydrolysis and transpeptidation of glutamyl substrates. The signal peptide-truncated recombinant enzyme (rBAGGT) showed two-fold enhanced specific activity for hydrolysis and optimum pH shift to pH 7 from pH 6 compared with the wild type. The hydrolysis activity of rBAGGT was tolerant against NaCl up to 2.5 M, whereas the transpeptidation activity decreased by NaCl. At pH 6, the addition of 1.5 M NaCl not only enhanced the hydrolysis activity but also inhibited the transpeptidation activity to be ignorable. By contrast, at pH 9 in the absence of NaCl, the alkaline pH-favored transpeptidation activity was 99% of the maximum with only 15% of the maximum hydrolysis activity. In conclusion, the hydrolysis and transpeptidation activities of the recombinant BAGGT is controllable by changing pH and whether or not to add NaCl.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aaslyng MD, Martens M, Poll L, Nielsen PM, Flyge H, Larsen LM. Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavoring. Journal of Agricultural Food Chemistry 46: 481-489 (1998)

    CAS  Article  Google Scholar 

  2. Abe K, Ito Y, Ohmachi T, Asada Y. Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Bioscience, Biotechnology, and Biochemistry 61: 1621-1625 (1997)

    CAS  Article  Google Scholar 

  3. Balan A, de Souza CS, Moutran A, Ferreira RC, Franco CS, Ramos CH, de Souza Ferreira LC. Purification and in vitro characterization of the maltose-binding protein of the plant pathogen Xanthomonas citri. Protein Expression and Purification 43: 103-110 (2005)

    CAS  Article  Google Scholar 

  4. Bindal S, Sharma S, Singh TP, Gupta R. Evolving transpeptidase and hydrolytic variants of γ-glutamyl transpeptidase from Bacillus licheniformis by targeted mutations of conserved residue Arg109 and their biotechnological relevance. Journal of Biotechnology 249: 82-90 (2017)

    CAS  Article  Google Scholar 

  5. Boanca G, Sand A, Barycki JJ. Uncoupling the enzymatic and autoprocessing activities of Helicobacter pylori γ-glutamyltranspeptidase. Jouranl of Biological Chemistry 281: 19029-19037 (2006)

    CAS  Article  Google Scholar 

  6. Calvio C, Romagnuolo F, Vulcano F, Speranza G, Morelli CF. Evidences on the role of the lid loop of γ-glutamyltransferases (GGT) in substrate selection. Enzyme and Microbial Technology 114: 55-62 (2018)

    CAS  Article  Google Scholar 

  7. Castellano I, Merlino A, Rossi M, La Cara F. Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity. Biochimie 92: 464-474 (2010)

    CAS  Article  Google Scholar 

  8. Castellano I, Di Salle A, Merlino A, Rossi M, La Cara F. Gene cloning and protein expression of γ-glutamyltranspeptidases from Thermus thermophilus and Deinococcus radiodurans: comparison of molecular and structural properties with mesophilic counterparts. Extremophiles 15: 259-270 (2011)

    CAS  Article  Google Scholar 

  9. Chi MC, Lo HF, Lin MG, Chen YY, Wang TF, Lin LL. Mutational analysis of a highly conserved PLSSMXP sequence in the small subunit of Bacillus licheniformis γ-glutamyltranspeptidase. Biomolecules 9: pii: E508 (2019)

    Article  Google Scholar 

  10. Cho HB, Roy JK, Park WJ, O. JB, Kim YW. Overproduction of a γ-glutamyltranspeptidase from Bacillus amyloliquefaciens in Bacillus subtilis through medium optimization. Korean Society of Food Science and Technology 49: 610-616 (2017)

    Google Scholar 

  11. Hwang SY, Ryang, J. H., Lim, W. J., Yoo, I. D., Oishi, K. Purification and properties of gamma-glutamyl transpeptidase from Bacillus sp. KUN-17 Journal of Microbiology and Biotechnology 6: 238-244 (1996)

    CAS  Google Scholar 

  12. Ikeda Y, Fujii J, Anderson ME, Taniguchi N, Meister A. Involvement of Ser-451 and Ser-452 in the catalysis of human γ-glutamyl transpeptidase. Jouranl of Biological Chemistry 270: 22223-22228 (1995a)

    CAS  Article  Google Scholar 

  13. Ikeda Y, Fujii J, Taniguchi N, Meister A. Human-glutamyl transpeptidase mutants involving conserved aspartate residues and the unique cysteine residue of the light subunit. Jouranl of Biological Chemistry 270: 12471-12475 (1995b)

    CAS  Article  Google Scholar 

  14. Jeon SY, Lee YM, Kim SS, Kim KO. Effect of added hydrolzyed vegetable proteins on consumers' response for Doenjang (Korean traditional feremented soybeen paste) soup. Food Science and Biotechnology 29: 45-53 (2020)

    CAS  Article  Google Scholar 

  15. Kinlough CL, Poland PA, Bruns JB, Hughey RP. γ‐Glutamyltranspeptidase: disulfide bridges, propeptide cleavage, and activation in the endoplasmic reticulum. Methods in Enzymology 401: 426-449 (2005)

    CAS  Article  Google Scholar 

  16. Minami H, Suzuki H, Kumagai H. A mutant Bacillus subtilis γ-glutamyltranspeptidase specialized in hydrolysis activity. FEMS Microbiology Letters 224: 169-173 (2003a)

    CAS  Article  Google Scholar 

  17. Minami H, Suzuki H, Kumagai H. Salt-tolerant γ-glutamyltranspeptidase from Bacillus subtilis 168 with glutaminase activity. Enzyme and Microbial Technology 32: 431-438 (2003b)

    CAS  Article  Google Scholar 

  18. Moallic C, Dabonne, S., Colas, B., Sine, J. P. Identification and characterization of a γ-glutamyltranspeptidase from a thermo-alcalophile strain of Bacillus pumilus. Protein J. 25: 391-397 (2006)

    CAS  Article  Google Scholar 

  19. Ogawa Y, Hosoyama H, Hamano M, Motai H. Purification and properties of γ-glutamyltranspeptidase from Bacillus subtilis (natto). Agricultural and Biological Chemistry 55: 2971-2977 (1991)

    CAS  PubMed  Google Scholar 

  20. Oinonen C, Rouvinen J. Structural comparison of Ntn‐hydrolases. Protein Science 9: 2329-2337 (2000)

    CAS  Article  Google Scholar 

  21. O'Mahony M, Ishii R. A comparison of English and Japanese taste languages: Taste descriptive methodology, codability and the umami taste. British Journal of Psychology 77: 161-174 (1986)

    Article  Google Scholar 

  22. Park WJ, Park SH. Bacillus strain, enzyme produced by the strain and application thereof. KR patent 101814024 (2018)

  23. Penninckx MJ, Jaspers CJ. Molecular and kinetic properties of purified γ-glutamyl transpeptidase from yeast (Saccharomyces cerevisiae). Phytochemistry 24: 1913-1918 (1985)

    CAS  Article  Google Scholar 

  24. Pica A, Russo Krauss I, I. C, La Cara F, Graziano G, Sica F, A. M. Effect of NaCl on the conformational stability of the thermophilic γ-glutamyltranspeptidase from Geobacillus thermodenitrificans: Implication for globular protein halotolerance. Biochimica et Biophysica Acta- Proteins and Proteomics 1834: 149-157 (2013)

    CAS  Article  Google Scholar 

  25. Rajput R, Verma VV, Chaudhary V, Gupta R. A hydrolytic γ-glutamyl transpeptidase from thermo-acidophilic archaeon Picrophilus torridus: binding pocket mutagenesis and transpeptidation. Extremophiles 17: 29-41 (2013)

    CAS  Article  Google Scholar 

  26. Rigi G, Beyranvand P, Ghaedmohammadi S, Heidarpanah S, Noghabi KA, Ahmadian G. Comparison of the extracellular full-length and truncated recombinant protein A production in Escherichia coli BL21 (DE3). Journal of Paramedical Sciences 6: 37-47 (2015)

    Google Scholar 

  27. Suzuki H, Kumagai H. Autocatalytic processing of γ-glutamyltranspeptidase. Jouranl of Biological Chemistry 277: 43536-43543 (2002)

    CAS  Article  Google Scholar 

  28. Suzuki H, Yamada, C., Kato, K. γ-Glutamyl compounds and their enzymatic production using bacterial γ-glutamyltranspeptidase. Amino Acids 32: 333-340 (2007)

    CAS  Article  Google Scholar 

  29. Wakayama M, Yamagata T, Kamemura A, Bootim N, Yano S, Tachiki T, Yoshimune K, Moriguchi M. Characterization of salt-tolerant glutaminase from Stenotrophomonas maltophilia NYW-81 and its application in Japanese soy sauce fermentation. Journal of Industrial Microbiology & Biotechnology 32: 383-390 (2005)

    CAS  Article  Google Scholar 

  30. Wu Q, Xu H, Zhang L, Yao J, Ouyang P. Production, purification and properties of γ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2. J. Mole. Catal. B Enzym. 43: 113–117 (2006)

    CAS  Article  Google Scholar 

  31. Xu L, Gao G, Wengen C, Xu J, Zhao L H, Zhang X. Enzymatic synthesis of γ-glutamylmethylamide from glutamic acid γ-methyl ester and methylamine catalyzed by Escherichia coli having γ-glutamyltranspeptidase activity. Applied Biochemistry and Biotechnology 173: 851-856 (2014)

    CAS  Article  Google Scholar 

  32. Yamaguchi S, Ninomiya K. Umami and food palatability. Journal of Nutrition 130: 921S-926S (2000)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by C&D project program by Nongshim Co. and in part by Cooperative Research Program for Agriculture Science & Technology Development (PJ013833022021) funded by Rural Development Administration, Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young-Wan Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 495 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, HB., Ahn, JH., Yang, HG. et al. Effects of pH and NaCl on hydrolysis and transpeptidation activities of a salt-tolerant γ-glutamyltranspeptidase from Bacillus amyloliquefaciens S0904. Food Sci Biotechnol 30, 853–860 (2021). https://doi.org/10.1007/s10068-021-00928-6

Download citation

Keywords

  • γ-Glutamyltranspeptidase
  • Glutamine hydrolysis
  • Transpeptidation
  • Salt tolerance
  • pH dependency