Skip to main content

Characteristics for phage-encoded cell wall hydrolase of LysSAP27 to reduce staphylococcal food poisoning

Abstract

To reduce staphylococcal food poisoning (SFP), a phage-encoded cell wall hydrolase called endolysin has emerged as an attractive antibacterial agent. In this study, the Staphylococcus aureus infecting phage vB_SauS-SAP27 (ϕSAP27) was isolated from sewage and characterized morphologically and genetically. ϕSAP27 was identified as Siphoviridae temperate phage, with a genome of 43 kbp. A ϕSAP27 endolysin named LysSAP27 was produced recombinantly in Escherichia coli. LysSAP27 exhibited the highest activity at neutral pH and a temperature of 30 °C, and its lytic activity was upregulated by calcium ions. Following optimization of the enzymatic conditions, LysSAP27 was applied to S. aureus-contaminated milk. Treatment with 2 μM LysSAP27 led to a significant bactericidal effect, corresponding to a reduction in bacterial titer by 2.8 log CFU/mL within 1 h and 3.4 log CFU/mL within 2 h. Therefore, LysSAP27 could be used as an effective antimicrobial agent to prevent SFP in food.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ackermann HW. Basic phage electron microscopy. Vol. 1, pp.113–126. In: Bacteriophages. Clokie MRJ, Kropinski AM (eds.). Humana Press, New York, USA (2009)

  2. Bonilla N, Rojas MI, Netto Flores Cruz G, Hung SH, Rohwer F, Barr JJ. Phage on tap-a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 4: e2261 (2016)

  3. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNA Plotter: circular and linear interactive genome visualization. Bioinformatics 25: 119-120 (2009)

    CAS  Article  Google Scholar 

  4. Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology 7: 629-641 (2009)

    CAS  Article  Google Scholar 

  5. Chang Y, Kim M, Ryu S. Characterization of a novel endolysin LysSA11 and its utility as a potent biocontrol agent against Staphylococcus aureus on food and utensils. Food Microbiology 68: 112-120 (2017)

    CAS  Article  Google Scholar 

  6. Cooper CJ, Khan Mirzaei M, Nilsson AS. Adapting drug approval pathways for bacteriophage-based therapeutics. Frontiers in Microbiology 7: 1209 (2016)

    PubMed  PubMed Central  Google Scholar 

  7. Donovan DM, Lardeo M, Foster-Frey J. Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiology Letters 265: 133-139 (2006)

    CAS  Article  Google Scholar 

  8. Francki RIB, Fauquet CM, Knudson DL, Brown F. Descriptions of virus families and groups, pp. 90–405. In: Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses Virology Division of the International Union of Microbiological Societies. Francki RIB, Fauquet CM, Knudson DL, Brown F (eds). Springer-Verlag Wien,Vienna, Aus. (1991)

  9. Freyberger HR, He Y, Roth AL, Nikolich MP, Filippov AA. Effects of Staphylococcus aureus bacteriophage K on expression of cytokines and activation markers by human dendritic cells in vitro. Viruses 10: 617 (2018)

    CAS  Article  Google Scholar 

  10. Gabashvili E, Osepashvili M, Koulouris S, Ujmajuridze L, Tskhitishvili Z, Kotetishvili M. Phage transduction is involved in the intergeneric spread of antibiotic resistance-associated blaCTX-M, mel, and tetM loci in natural populations of some human and animal bacterial pathogens. Current Microbiology 77: 185-193 (2019)

    Article  Google Scholar 

  11. Gutiérrez D, Delgado S, Vázquez-Sánchez D, Martínez B, Cabo ML, Rodríguez A, Herrera JJ, García P. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Applied and Environmental Microbiology 78: 8547-8554 (2012)

    Article  Google Scholar 

  12. Henein AE, Hanlon GW, Cooper CJ, Denyer SP, Maillard JY. A partially purified Acinetobacter baumannii phage preparation exhibits no cytotoxicity in 3T3 mouse fibroblast cells. Frontiers in Microbiology 7: 1198 (2016)

    Article  Google Scholar 

  13. Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology 70: 217-248 (2010)

    CAS  Article  Google Scholar 

  14. Imanishi I, Uchiyama J, Tsukui T, Hisatsune J, Ide K, Matsuzaki S, Sugai M, Nishifuji K. Therapeutic potential of an endolysin derived from Kayvirus S25-3 for Staphylococcal impetigo. Viruses 11: 769 (2019)

    CAS  Article  Google Scholar 

  15. Isidro A, Henriques AO, Tavares P. The portal protein plays essential roles at different steps of the SPP1 DNA packaging process. Virology 322: 253-263 (2004)

    CAS  Article  Google Scholar 

  16. Jun SY, Jang IJ, Yoon S, Jang K, Yu KS, Cho JY, Seong MW, Jung GM, Yoon SJ, Kang SH. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrobial Agents Chemotherapy 61: e02629-e02616 (2017)

    Article  Google Scholar 

  17. Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, Necel A, Jakubowska-Deredas M, Narajczyk M, Richert M, Mieszkowska A, Wróbel B, Węgrzyn G, Węgrzyn A. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports 6: 34338 (2016)

  18. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Research International 2014: 827965 (2014)

    Article  Google Scholar 

  19. Kaur S, Harjai K, Chhibber S. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. Plos ONE 11: e0157626 (2016)

  20. Keary R, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A. Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage 4: e28451 (2014)

    Article  Google Scholar 

  21. Kutter E. Phage Host range and efficiency of plating. Vol. 1, pp. 141–149. In: Bacteriophages: Methods and Protocols. Clokie MRJ, Kropinski AM (eds). Humana Press, New York, USA (2009)

  22. Love MJ, Bhandari D, Dobson RCJ, and Billington C. Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care. Antibiotics (Basel) 7 (2018)

  23. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 27: 18 (2012)

  24. Moller AG, Lindsay JA, Read TD. Determinants of phage host range in Staphylococcus species. Applied and Environmental Microbiology 85: e00209 (2019)

    CAS  Article  Google Scholar 

  25. Moon BY, Park JY, Robinson DA, Thomas JC, Park YH, Thornton JA, Seo KS. Mobilization of genomic islands of Staphylococcus aureus by temperate bacteriophage. Plos ONE 11: e0151409 (2016)

    Article  Google Scholar 

  26. Na H, Kong M, Ryu S. Characterization of LysPBC4, a novel Bacillus cereus-specific endolysin of bacteriophage PBC4. FEMS Microbiology Letters 363: 1-8 (2016)

    Article  Google Scholar 

  27. Nicholas K, Nicholas HB, Deerfield D. GeneDoc: Analysis and visualization of genetic variation. EMBNEW News 4: 14 (1997)

    Google Scholar 

  28. Oliveira H, Melo LDR, Santos SB, Nóbrega FL, Ferreira EC, Cerca N, Azeredo J, Kluskens LD. Molecular aspects and comparative genomics of bacteriophage endolysins. Journal of Virology 87: 4558-4570 (2013)

    CAS  Article  Google Scholar 

  29. Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Applied and Environmental Microbiology 78: 2297-2305 (2012)

    CAS  Article  Google Scholar 

  30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069 (2014)

    CAS  Article  Google Scholar 

  31. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7: 539 (2011)

  32. Stern A, Sorek R. The phage-host arms race: Shaping the evolution of microbes. BioEssays 33: 43-51 (2011)

    CAS  Article  Google Scholar 

  33. van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiology and Molecular Biology Reviews 80: 745-763 (2016)

    Article  Google Scholar 

  34. Yu JH, Lim JA, Chang HJ, Park JH. Characteristics and lytic activity of phage-derived peptidoglycan hydrolase, LysSAP8, as a potent alternative biocontrol agent for Staphylococcus aureus. Journal of Microbiology and Biotechnology 29: 1916-1924 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Institute of Planning and Evolution for Biotechnology of Food, Agriculture, Forestry, and Fisheries (117060033HD020) and the Gachon University research fund of 2020 (GCU-202004510001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyun Park.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Supplementary file2 (DOCX 598 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, Dw., Lee, YD. & Park, JH. Characteristics for phage-encoded cell wall hydrolase of LysSAP27 to reduce staphylococcal food poisoning. Food Sci Biotechnol 30, 745–753 (2021). https://doi.org/10.1007/s10068-021-00910-2

Download citation

Keywords

  • Bacteriophage
  • Endolysin
  • Staphylococcus aureus
  • Food Poisoning