Skip to main content

Manipulations of glucose/lipid metabolism and gut microbiota of resistant starch encapsulated Ganoderma lucidum spores in T2DM rats


Our team previously demonstrated that Ganoderma lucidum spores (GLS) and resistant starch (RS) had hypoglycemic effects separately on type 2 diabetic mellitus (T2DM) rats. This work was to explore the effects of administering encapsulated GLS within RS (referred to as EGLS) in the T2DM rats, which were induced by streptozotocin (STZ). The EGLS was orally administered to rats for 28 days. The parameters of glycometabolism and lipometabolism were evaluated, and fecal microbiota composition was investigated. The results showed that EGLS significantly enhanced glycometabolism and lipometabolism parameters in T2DM rats, which might be associate with the enhancement of the glucose and lipid metabolism, insulin secretion, and glycogen synthesis and reduced lipogenesis. Furthermore, the intervention of EGLS also reduced the Proteobacteria community and improved dysfunctional gut microbiota. This study indicated EGLS may be a potential candidate for dietary intervention to modulate diabetes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Amrutkar M, Cansby E, Chursa U, Nuñez-Durán E, Chanclón B, Ståhlman M, Fridén V, Mannerås-Holm L, Wickman A, Smith U. Genetic disruption of protein kinase STK25 ameliorates metabolic defects in a diet-induced type 2 diabetes model. Diabetes 64: 2791-2804 (2015)

    CAS  Article  Google Scholar 

  2. Bach EM, Martins, Cristina AM, Nascimento, Paloma AM, Wadt, Yamashita NS. Hypoglicemic and Hypolipedimic Effects of Ganoderma lucidum in Streptozotocin-Induced Diabetic Rats. Medicines (2018)

  3. Chan S, Sun R, Zeng X, Choong Z, Wang H, Watt M, Ye J. Activation of PPARa ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased ER stress. Diabetes 62: 1-11 (2013)

    Article  Google Scholar 

  4. Clark NG, Fox KM, Grandy S. Symptoms of diabetes and their association with the risk and presence of diabetes: findings from the Study to Help Improve Early evaluation and management of risk factors Leading to Diabetes (SHIELD). Diabetes Care 30: 2868-2873 (2007)

    Article  Google Scholar 

  5. Claudia, Lupp, and, Marilyn, L., Robertson, and, Mark, E., Wickham. Host-Mediated Inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host and Microbe (2007)

  6. Conteh A, Huang R. Targeting the gut microbiota by Asian and Western dietary constituents: a new avenue for diabetes. Toxicology research 9: 569-577 (2020)

    Article  Google Scholar 

  7. Elberry AA, Harraz FM, Ghareib SA, Gabr SA, Nagy AA, Abdelsattar E. Methanolic extract of Marrubium vulgare ameliorates hyperglycemia and dyslipidemia in streptozotocin-induced diabetic rats. International Journal of Diabetes Mellitus 3: 37-44 (2015)

    Article  Google Scholar 

  8. Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell 124: 35-46 (2006)

    CAS  Article  Google Scholar 

  9. Gómez-Valadés AG, Vidal-Alabró A, Molas M, Boada J, Bermúdez J, Bartrons R, Perales JC. Overcoming Diabetes-Induced Hyperglycemia through Inhibition of Hepatic Phosphoenolpyruvate Carboxykinase (GTP) with RNAi. Molecular Therapy 13: 401-410 (2006)

    Article  Google Scholar 

  10. Gong F, Li F, Zhang L, Li J, Zhang Z, Wang G. Hypoglycemic effects of crude polysaccharide from purslane. International journal of molecular sciences 10: 880-888 (2009)

    CAS  Article  Google Scholar 

  11. Haenen D, Zhang J, Souza dS, C., Bosch G, Van dM, I. M., Van Arkel J, van den Borne JJGC, Perez Gutierrez O, Smidt H, Kemp B. A Diet High in Resistant Starch Modulates Microbiota Composition, SCFA Concentrations, and Gene Expression in Pig Intestine. Journal of Nutrition 143: 274-283 (2013)

  12. Hanson RW, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annual review of biochemistry 66: 581-611 (1997)

    CAS  Article  Google Scholar 

  13. Janaswamy S. Encapsulation altered starch digestion: Toward developing starch-based delivery systems. Carbohydrate polymers 101: 600-605 (2014)

    CAS  Article  Google Scholar 

  14. Jiang F, Du C, Jiang W, Wang L, Du SK. The preparation, formation, fermentability, and applications of resistant starch. International Journal of Biological Macromolecules 150 (2019)

  15. Kabir AU, Samad MB, D’Costa NM, Akhter F, Ahmed A, Hannan JMA. Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding. BMC complementary and alternative medicine 14: 31 (2014)

    Article  Google Scholar 

  16. Kaidanovich-Beilin O, Eldar-Finkelman H. Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: molecular characterization in liver and muscle. Journal of Pharmacology and Experimental Therapeutics 316: 17-24 (2006)

    CAS  Article  Google Scholar 

  17. Karlsson F, Tremaroli V, Nielsen J, Baeckhed F. Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes 62: 3341-3349 (2013)

    CAS  Article  Google Scholar 

  18. Laforêt P, Malfatti E, Vissing J. Update on new muscle glycogenosis. Current opinion in neurology 30: 449-456 (2017)

    Article  Google Scholar 

  19. Larsen N, Vogensen FK, Den Berg FV, Nielsen DS, Andreasen AS, Pedersen BK, Alsoud WA, Sorensen SJ, Hansen LH, Jakobsen M. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLOS ONE 5 (2010)

  20. Marques AM, Linhares BS, Novaes RD, Freitas MB, Gonalves RV. Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLoS ONE 15: e0233364 (2020)

    CAS  Article  Google Scholar 

  21. Mukundwa A, Mukaratirwa S, Masola B. Effects of oleanolic acid on the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic male Sprague-Dawley rats. Journal of Diabetes (2015)

  22. Oyenihi AB, Langa SOP, Mukaratirwa S, Masola B. Effects of Centella asiatica on skeletal muscle structure and key enzymes of glucose and glycogen metabolism in type 2 diabetic rats. Biomedicine & Pharmacotherapy 112: 108715 (2019)

    CAS  Article  Google Scholar 

  23. Pan D, Zhang D, Wu J, Chen C, Xu Z, Yang H, Zhou P. Antidiabetic, antihyperlipidemic and antioxidant activities of a novel proteoglycan from Ganoderma lucidum fruiting bodies on db/db mice and the possible mechanism. PloS ONE 8: e68332 (2013)

    CAS  Article  Google Scholar 

  24. Park K-Y, Kim B, Hyun C-K. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice. Journal of clinical biochemistry and nutrition 56: 240-246 (2015)

    CAS  Article  Google Scholar 

  25. Shang W, Si X, Zhou Z, Wang J, Strappe P, Blanchard C. Studies on the unique properties of resistant starch and chito-oligosaccharide complexes for reducing high-fat diet-induced obesity and dyslipidemia in rats. Journal of Functional Foods 38: 20-27 (2017)

    CAS  Article  Google Scholar 

  26. Shi Z, Wang L, Zhang H. Low Diversity Bacterial Community and the Trapping Activity of Metabolites from Cultivable Bacteria Species in the Female Reproductive System of the Oriental Fruit Fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). International Journal of Molecular Sciences 13: 6266-6278 (2012)

    CAS  Article  Google Scholar 

  27. Si X, Zhou Z, Strappe P, Blanchard C. A comparison of RS4-type resistant starch to RS2-type resistant starch in suppressing oxidative stress in high-fat-diet-induced obese rats. Food & Function 8: 232-240 (2017)

    CAS  Article  Google Scholar 

  28. Sun H, Ma X, Zhang S, Zhao D, Liu X. Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats. International journal of biological macromolecules 110: 276-284 (2018)

    CAS  Article  Google Scholar 

  29. Teng BS, Wang CD, Zhang D, Wu JS, Pan D, Pan LF, Yang HJ, Zhou P. Hypoglycemic effect and mechanism of a proteoglycan from Ganoderma lucidum on streptozotocin-induced type 2 diabetic rats. European Review for Medical and Pharmacological Sciences 16: 166 (2012)

    CAS  PubMed  Google Scholar 

  30. Wang F, Zhou Z, Ren X, Wang Y, Yang R, Luo J, Strappe P. Effect of Ganoderma lucidum spores intervention on glucose and lipid metabolism gene expression profiles in type 2 diabetic rats. Lipids in health and disease 14: 49 (2015)

    Article  Google Scholar 

  31. Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, O'Keefe SJD. Diet and the human gut microbiome: an international review. Digestive Diseases and Sciences 65 (2020)

  32. Wirth R, Bódi N, Maróti G, Bagyánszki M, Talapka P, Fekete É, Bagi Z, Kovács KL. Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induced diabetes. Plos One 9 (2014)

  33. Xiao C, Wu Q-P, Cai W, Tan J-B, Yang X-B, Zhang J-M. Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice. Archives of pharmacal research 35: 1793-1801 (2012)

    CAS  Article  Google Scholar 

  34. Xu S, Dou Y, Ye B, Wu Q, Wang Y, Hu M, Ma F, Rong X, Guo J. Ganoderma lucidum polysaccharides improve insulin sensitivity by regulating inflammatory cytokines and gut microbiota composition in mice. Journal of functional foods 38: 545-552 (2017)

    CAS  Article  Google Scholar 

  35. Yan G, Shuiling Z, Zhenming L, Hongyu X, Jin-Song S. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms. International Journal of Medicinal Mushrooms (2014)

  36. Zheng J, Yang B, Yu Y, Chen Q, Huang T, Li D. Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting β-cells. Combinatorial chemistry & high throughput screening 15: 542-550 (2012)

    CAS  Article  Google Scholar 

  37. Zhou Z, Wang F, Ren X, Wang Y, Blanchard C. Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats. International Journal of Biological Macromolecules 75: 316-321 (2015)

    CAS  Article  Google Scholar 

  38. Zhou Z, Ren X, Jiang Y, Zhang Q, Zhang M, Strappe P, Blanchard C. Responses of fecal bacterial communities to resistant starch intervention in diabetic rats. Starch - Stärke 68: 1008-1015 (2016)

    CAS  Article  Google Scholar 

Download references


This work was financially supported by Tianjin One Belt and One Road Technological Innovation Project 583(18PTZWHZ00080), the Foundation (No. xnc201605) of Tianjin University of Science and Technology, Institute for New Rural Development, P. R. China. The contents are the authors' sole responsibility.

Author information



Corresponding author

Correspondence to Yumei Jiang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethics statement

All national guidelines of laboratory animals were followed. The animals were approved by the Animal Care and Use Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, N., Zhou, Y. et al. Manipulations of glucose/lipid metabolism and gut microbiota of resistant starch encapsulated Ganoderma lucidum spores in T2DM rats. Food Sci Biotechnol 30, 755–764 (2021).

Download citation


  • Ganoderma lucidum spores
  • Resistant starch
  • Encapsulation
  • Diabetes
  • Gut microbiota