Skip to main content

Antiproliferative and antibacterial activity of extracts of Ganoderma strains grown in vitro

Abstract

In this bioprospecting study the biological activities of extracts of the in vitro culture of Ganoderma Mexican strains were evaluated. The extracts were tested by the Sulforhodamine B staining method for antiproliferative activity and the plate microdilution method for antibacterial activity. Extracts that proved bioactive in these two activities, the antioxidant activity (Galvinoxyl, ABTS, and DPPH) and total phenolic contents (Folin-Ciocalteu) were additionally determined, as well as acute toxicity (Artemia franciscana). In the antiproliferative activity Ganoderma curtisii strain (GH-16-015) obtained a remarkable value of GI50 ≤ 50 µg/mL against tumor lines: A549, HBL-100, HeLa, and T-47D. G. curtisii strains (GH-16-012 and GH-16-015) showed MIC values = 500 µg/mL against Staphylococcus aureus. G. curtisii strain (GH-16-012) almost reduced by 50% the radical Galvinoxyl. Finally, G. curtisii strain (GH-16-023) presented the lowest level of toxicity with a LC50 of 490.881 µg/mL against A. franciscana. These results support the potential medicinal effects of Mexican strains of G. curtisii.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bishop KS, Kao CHJ, Xu Y, Glucina MP, Paterson RRM, Ferguson LR. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry. 114: 56-65 (2015)

    CAS  Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 68: 394-424 (2018)

    Google Scholar 

  3. Ćilerdžić J, Stajić M, Vukojević J. Potential of submergedly cultivated mycelia of Ganoderma spp. as antioxidant and antimicrobial agents. Current Pharmaceutical Biotechnology. 17: 275-282 (2016)

    Article  Google Scholar 

  4. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. 9th ed. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2012)

  5. Cör D, Knez Ž, Hrnčič MK. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules. 23: 649 (2018)

    Article  Google Scholar 

  6. Couttolenc A, Espinoza C, Fernández JJ, Norte M, Plata GB, Padrón JM, Shnyreva A, Trigos Á. Antiproliferative effect of extract from endophytic fungus Curvularia trifolii isolated from the “Veracruz Reef System” in Mexico. Pharmaceutical Biology. 54: 1392-1397 (2016)

    Article  Google Scholar 

  7. Couttolenc A, Díaz-Porras Á, Espinoza C, Medina ME, Trigos Á. On the primary and secondary antioxidant activity from hydroxy-methylcoumarins: experimental and theoretical studies. Journal of Physical Organic Chemistry. 33: e4025 (2020)

    CAS  Article  Google Scholar 

  8. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology. 85: 1629-1642 (2010)

    CAS  Article  Google Scholar 

  9. Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R. Fungal metabolites with anticancer activity. Natural Product Reports. 31: 617-627 (2014)

    CAS  Article  Google Scholar 

  10. Fang QH, Zhong JJ. Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnology Progress. 18 :51-54 (2002)

    CAS  Article  Google Scholar 

  11. Harhaji TMH, Mijatović SA, Maksimović-Ivanić DD, Stojanović ID, Momčilović MB, Tufegdžić SJ, Maksimović VM, Marjanovi ZS, Stošić-Grujičić SD. Anticancer properties of Ganoderma lucidum methanol extracts in vitro and in vivo. Nutrition and Cancer. 61: 696-707 (2009)

    Article  Google Scholar 

  12. Izumitsu K, Hatoh K, Sumita T, Kitade Y, Morita A, Gafur A, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C. Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience. 53: 396-401 (2012)

    CAS  Article  Google Scholar 

  13. Kviecinski MR, Felipe KB, Schoenfelder T, de Lemos Wiese LP, Rossi MH, Gonçalez E, Felicio JD, Filho DW, Pedrosa RC. Study of the antitumor potential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. Journal of Ethnopharmacology. 117: 69-75 (2008)

    Article  Google Scholar 

  14. Li WJ, Nie SP, Liu XZ, Zhang H, Yang Y, Yu Q, Xie MY. Antimicrobial properties, antioxidant activity and cytotoxicity of ethanol-soluble acidic components from Ganoderma atrum. Food and Chemical Toxicology. 50: 689-694 (2012)

    CAS  Article  Google Scholar 

  15. Li X, Wu Q, Bu M, Hu L, Du WW, Jiao C, Pan H, Sdiri M, Wu N, Xie Y, Yang BB. Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells. Oncotarget. 7: 33948-33959 (2016)

    Article  Google Scholar 

  16. Liu YW, Gao JL, Guan J, Qian ZM, Feng K, Li SP. Evaluation of antiproliferative activities and action mechanisms of extracts from two species of Ganoderma on tumor cell lines. Journal of Agricultural and Food Chemistry. 57: 3087-3093 (2009)

    CAS  Article  Google Scholar 

  17. López-Peña D, Gutiérrez A, Hernández-Navarro E, Valenzuela R, Esqueda M. Diversidad y distribución de Ganoderma (Polyporales: Ganodermataceae) en Sonora, México. Botanical Sciences. 94: 431-439 (2016)

    Article  Google Scholar 

  18. Mendoza G, Suárez-Medellín J, Espinoza C, Ramos-Ligonio A, Fernández JJ, Norte M, Trigos Á. Isolation and characterization of bioactive metabolites from fruiting bodies and mycelial culture of Ganoderma oerstedii (Higher Basidiomycetes) from Mexico. International Journal of Medicinal Mushrooms. 17: 501-509 (2015)

    Article  Google Scholar 

  19. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DJ, McLaughlin JL. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica. 45: 31-34 (1982)

    CAS  Article  Google Scholar 

  20. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Hugh Campbell H, Mayo J, Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute. 83: 757-766 (1991)

    CAS  Article  Google Scholar 

  21. Mwangi GG, Wagacha JM, Nguta JM, Mbaria JM. Brine shrimp cytotoxicity and antimalarial activity of plants traditionally used in treatment of malaria in Msambweni district. Pharmaceutical Biology. 53: 588-593 (2015)

    Article  Google Scholar 

  22. National Cancer Institute (NCI). NCI-60 Screening Methodology (2015). Available from: https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm. Accessed Sep. 01, 2020.

  23. Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S. Natural compounds for cancer treatment and prevention. Pharmacological Research. 59: 365-378 (2009)

    CAS  Article  Google Scholar 

  24. O’Donnell F, Smyth TJP, Ramachandran VN, Smyth WF. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. International Journal of Antimicrobial Agents. 35: 30-38 (2010)

    Article  Google Scholar 

  25. Paterson RRM. Ganoderma—A therapeutic fungal biofactory. Phytochemistry. 67: 1985-2001 (2006)

    CAS  Article  Google Scholar 

  26. Rempe CS, Burris KP, Lenaghan SC, Stewart CN. The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Frontiers in Microbiology. 8: 422 (2017)

    Article  Google Scholar 

  27. Shnyreva AV, Shnyreva AA, Espinoza C, Padrón JM, Trigos Á. Antiproliferative activity and cytotoxicity of some medicinal wood-destroying mushrooms from Russia. International Journal of Medicinal Mushrooms. 20: 1-11 (2018)

    Article  Google Scholar 

  28. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute. 82: 1107-1112 (1990)

    CAS  Article  Google Scholar 

  29. Smith BJ, Sivasithamparam K. Morphological studies of Ganoderma (Ganodermataceae) from the Australasian and Pacific regions. Australian Systematic Botany. 16: 487-503 (2003)

    Article  Google Scholar 

  30. Taofiq O, Heleno SA, Calhelha RC, Alves MJ, Barros L, González-Paramás AM, Barreiro MF, Ferreira ICFR. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology. 108: 139-147 (2017)

    CAS  Article  Google Scholar 

  31. Torres-Torres MG, Guzmán-Dávalos L, Gugliotta AM. Ganoderma in Brazil: known species and new records. Mycotaxon. 121: 93-132 (2012)

    Article  Google Scholar 

  32. Torres-Torres MG, Ryvarden L, Guzmán-Dávalos L. Ganoderma subgenus Ganoderma in Mexico. Revista Mexicana de Micología. 41: 27-45 (2015)

    Google Scholar 

  33. Upadhyay M, Shrivastava B, Jain A, Kidwai M, Kumar S, Gomes J, Goswami DG, Panda AK, Kuhad RC. Production of ganoderic acid by Ganoderma lucidum RCKB-2010 and its therapeutic potential. Annals of Microbiology. 64: 839-846 (2014)

    CAS  Article  Google Scholar 

  34. Veljović S, Veljović M, Nikićević N, Despotović S, Radulović S, Nikšić M, Filipović L. Chemical composition, antiproliferative and antioxidant activity of differently processed Ganoderma lucidum ethanol extracts. Journal of Food Science and Technology. 54: 1312-1320 (2017)

    Article  Google Scholar 

  35. World Health Organization (WHO). WHO publishes list of bacteria for which new antibiotics are urgently needed (2017). Available from: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed Sep. 01, 2020.

  36. Zengin G, Sarikurkcu C, Gunes E, Uysal A, Ceylan R, Uysal S, Gungor H, Aktumsek A. Two Ganoderma species: Profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to Diabetes mellitus, Alzheimer’s disease and skin disorders. Food and Function. 6: 2794-2802 (2015)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Consejo Nacional de Ciencia y Tecnología (CONACYT, México) for the scholarship for PhD studies (610562) and the project Ciencia de Frontera 2019-CONACYT (304020) as well as the Spanish Government for financial support through project PGC2018-094503-B-C22 (MCIU/AEI/FEDER, UE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guillermo Mendoza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serrano-Márquez, L., Trigos, Á., Couttolenc, A. et al. Antiproliferative and antibacterial activity of extracts of Ganoderma strains grown in vitro. Food Sci Biotechnol 30, 711–721 (2021). https://doi.org/10.1007/s10068-021-00903-1

Download citation

Keywords

  • Antibacterial activity
  • Antioxidant activity
  • Antiproliferative activity
  • Brine shrimp
  • Molecular identification