Skip to main content

Advertisement

Log in

Performance of concanavalin A-immobilized on polyacrylate beads for the detection of human norovirus and hepatitis A virus in fecal specimens

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Quantitative reverse transcription PCR (qRT-PCR) is a sensitive method for the detection of foodborne viruses in fecal samples. However, the performance of qRT-PCR depends on the efficiency of virus concentration methods. In this study, the effect of Concanavalin A (Con A)-immobilized on polyacrylate beads (Con A-PAB) on the qRT-PCR performance, in terms of sensitivity and specificity to detect foodborne viruses in human fecal specimens was compared with commercial viral RNA extraction kit (VRNA). The detection of foodborne viruses by qRT-PCR was validated by viral genome sequencing. Both Con A-PAB and VRNA methods were equally sensitive and specific for detecting hepatitis A virus in fecal specimens. Even though both methods showed high specificity (100% vs. 100%) for detecting human norovirus (HuNoV), Con A-PAB method exhibited higher sensitivity (100% vs. 42.9%) and accuracy (100% vs. 73.3%) compared to VRNA method. In conclusion, the application of Con A-PAB would improve the performance of qRT-PCR for the detection of HuNoV in fecal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Almand EA, Moore MD, Jaykus LA. Norovirus binding to ligands beyond histo-blood group antigens. Front. Microbiol. 8: 2549 (2017)

    Article  Google Scholar 

  • Ambert-Balay K, Pothier P. Evaluation of 4 immunochromatographic tests for rapid detection of norovirus in faecal samples. J. Clin. Virol. 56: 194-198 (2013)

    Article  Google Scholar 

  • Arnal C, Ferré-Aubineau V, Besse B, Mignotte B, Schwartzbrod L, Billaudel S. Comparison of seven RNA extraction methods on stool and shellfish samples prior to hepatitis A virus amplification. J. Virol. Methods 77: 17-26 (1999)

    Article  CAS  Google Scholar 

  • Brassard J, Lamoureux L, Gagné MJ, Poitras É, Trottier Y-L, Houde A. Comparison of commercial viral genomic extraction kits for the molecular detection of foodborne viruses. Can. J. Microbiol. 55: 1016-1019 (2009)

    Article  CAS  Google Scholar 

  • Bruggink LD, Dunbar NL, Marshall JA. Evaluation of the updated RIDAQUICK (Version N1402) immunochromatographic assay for the detection of norovirus in clinical specimens. J. Virol. Methods 223: 82-87 (2015)

    Article  CAS  Google Scholar 

  • Butot S, Le Guyader FS, Krol J, Putallaz T, Amoroso R, Sánchez G. Evaluation of various real-time RT-PCR assays for the detection and quantitation of human norovirus. J. Virol. Methods 167: 90-94 (2010)

    Article  CAS  Google Scholar 

  • Cannon JL, Vinjé J. Histo-blood group antigen assay for detecting noroviruses in water. Appl. Environ. Microbiol. 74: 6818-6819 (2008)

    Article  CAS  Google Scholar 

  • Esona MD, McDonald S, Kamili S, Kerin T, Gautam R, Bowen MD. Comparative evaluation of commercially available manual and automated nucleic acid extraction methods for rotavirus RNA detection in stools. J. Virol. Methods 194: 242-249 (2013)

    Article  CAS  Google Scholar 

  • FAO/WHO. Guidelines on the application of general principles of food hygiene to the control of viruses in food CAC/GL, 79–2012. Codex Alimentarius Commission Food Standards 2012. Avilable from: http://www.fao.org/input/download/standards/13215/CXG_079e.pdf. Accessed Apr. 04, 2020

  • Fransen K, Mortier D, Heyndrickx L, Verhofstede C, Janssens W, van der Groen G. Isolation of HIV-1 RNA from plasma: evaluation of seven different methods for extraction (part two). J. Virol. Methods 76: 153-157 (1998)

    Article  CAS  Google Scholar 

  • Gilpatrick SG, Schwab KJ, Estes MK, Atmar RL. Development of an immunomagnetic capture reverse transcription-PCR assay for the detection of Norwalk virus. J. Virol. Methods 90: 69-78 (2000)

    Article  CAS  Google Scholar 

  • Greenhalgh, T. How to read a paper. Papers that report diagnostic or screening tests. BMJ 315: 540-543 (1997)

    Article  CAS  Google Scholar 

  • Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 135: 168-186 (2018)

    Article  CAS  Google Scholar 

  • Hennechart-Collette C, Martin-Latil S, Guillier L, Perelle S. Determination of which virus to use as a process control when testing for the presence of hepatitis A virus and norovirus in food and water. Int. J. Food Microbiol. 202: 57-65 (2015)

    Article  Google Scholar 

  • Hoehne M, Schreier E. Detection of norovirus genogroup I and II by multiplex real-time RT-PCR using a 3’-minor groove binder-DNA probe. BMC Infect. Dis. 6: 69 (2006)

    Article  Google Scholar 

  • Hourfar, MK, Michelsen, U, Schmidt, M, Berger, A, Seifried E, Roth WK. High-throughput purification of viral RNA based on novel aqueous chemistry for nucleic acid isolation. Clin. Chem. 51: 1217-1222 (2005)

    Article  CAS  Google Scholar 

  • Iker BC, Bright KR, Pepper IL, Gerba CP, Kitajima M. Evaluation of commercial kits for the extraction and purification of viral nucleic acids from environmental and fecal samples. J. Virol. Methods 191: 24-30 (2013)

    Article  CAS  Google Scholar 

  • Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Takeda N, Katayama K. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol. 41: 1548-1557 (2003)

    Article  CAS  Google Scholar 

  • Kemp BM, Monroe C, Smith DG. Repeat silica extraction: a simple technique for the removal of PCR inhibitors from DNA extracts. J. Archaeol. Sci. 33: 1680-1689 (2006)

    Article  Google Scholar 

  • Kim D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, Choi JS, Kim MJ, Kim SH, Vaidya B, Lee SJ, Kwon J. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Biomaterials 128: 33-43 (2017)

    Article  CAS  Google Scholar 

  • Kim HS, Kim JS. Discrepancies between antigen and polymerase chain reaction tests for the detection of rotavirus and norovirus. Ann. Clin. Lab. Sci. 46: 282-285 (2016)

    PubMed  Google Scholar 

  • Kumthip K, Khamrin P, Saikruang W, Supadej K, Maneekarn N, Ushijima H. Comparative evaluation of norovirus infection in children with acute gastroenteritis by rapid Immunochromatographic test, RT-PCR and Real-time RT-PCR. J. Trop. Pediatr. 63: 468-475 (2017)

    Article  Google Scholar 

  • Lindesmith LC, Donaldson EF, LoBue AD, Cannon JL, Zheng DP, Vinje J, Baric RS. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med. 5: e31 (2008)

    Article  Google Scholar 

  • Neethirajan S, Ahmed SR, Chand R, Buozis J, Nagy É. Recent advances in biosensor development for foodborne virus detection. Nanotheranostics 1: 272-295 (2017)

    Article  Google Scholar 

  • Park Y, Cho Y-H, Jee Y, Ko G. Immunomagnetic separation combined with real-time reverse transcriptase PCR assays for detection of norovirus in contaminated food. Appl. Environ. Microbiol. 74: 4226-4230 (2008)

    Article  CAS  Google Scholar 

  • Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C. Pre-PCR processing: strategies to generate PCR-compatible samples. Mol. Biotechnol. 26: 133-146 (2004)

    Article  Google Scholar 

  • Randazzo W, Fabra MJ, Falcó I, López‐Rubio A, Sánchez G. Polymers and biopolymers with antiviral activity: Potential applications for improving food safety. Compr. Rev. Food Sci. Food Saf. 17: 754-768 (2018)

    Article  CAS  Google Scholar 

  • Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors–occurrence, properties and removal. J. Appl. Microbiol. 113: 1014-1026 (2012)

    Article  CAS  Google Scholar 

  • Schwab KJ, Neill FH, Le Guyader F, Estes MK, Atmar RL. Development of a reverse transcription-PCR–DNA enzyme immunoassay for detection of “Norwalk-like” viruses and hepatitis A virus in stool and shellfish. Appl. Environ. Microbiol. 67: 742-749 (2001)

    Article  CAS  Google Scholar 

  • Singh BK, Leuthold MM, Hansman GS. Structural constraints on human norovirus binding to histo-blood group antigens. mSphere 1: e00049-00016 (2016)

    Google Scholar 

  • Siqueira JAM, Linhares AdC, Oliveira DdS, Soares LdS, Lucena MSS, Wanzeller ALM, Mascarenhas JDAP, Gabbay YB. Evaluation of third-generation RIDASCREEN enzyme immunoassay for the detection of norovirus antigens in stool samples of hospitalized children in Belem, Para, Brazil. Diagn. Microbiol. Infect. Dis. 71: 391-395 (2011)

    Article  CAS  Google Scholar 

  • Sur K, McFall SM, Yeh ET, Jangam SR, Hayden MA, Stroupe SD, Kelso DM. Immiscible phase nucleic acid purification eliminates PCR inhibitors with a single pass of paramagnetic particles through a hydrophobic liquid. J. Mol. Diagn. 12: 620-628 (2010)

    Article  CAS  Google Scholar 

  • Tian P, Yang D, Mandrell R. A simple method to recover norovirus from fresh produce with large sample size by using histo-blood group antigen-conjugated to magnetic beads in a recirculating affinity magnetic separation system (RCAMS). Int. J. Food Microbiol. 147: 223-227 (2011)

    Article  Google Scholar 

  • WHO (2015). WHO Estimates of the Global Burden of Foodborne Diseases. Foodborne Diseases Burden Epidemiology Reference Group 2007–2015. World Health Organization, Geneva, Switzerland, (2015)

  • Wu W, Yu C, Wang Q, Zhao F, He H, Liu C, and Yang Q (2019) Research advances of DNA aptasensors for foodborne pathogen detection. Crit. Rev. Food Sci. Nutr. 1-16

  • Yang Z, Mammel M, Papafragkou E, Hida K, Elkins CA, and Kulka M. Application of next generation sequencing toward sensitive detection of enteric viruses isolated from celery samples as an example of produce. Int. J. Food Microbiol. 261: 73-81 (2017)

    Article  CAS  Google Scholar 

  • Yoon JG, Kang JS, Hwang SY, Song J, and Jeong SH. Magnetic bead-based nucleic acid purification kit: Clinical application and performance evaluation in stool specimens. J. Microbiol. Methods 124: 62-68 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the study subjects for their time and participation in this study. This research was supported by the research Grant (2017-C37703) received by J. Kwon from the Korea Basic Science Institute (KBSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duwoon Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Comparison of Con A-immobilized on polyacrylate beads and QIAamp Viral RNA Extraction Mini Kit methods for the detection of foodborne viruses present in fecal samples and validation of test results by viral genomic sequencing (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Mertens-Talcott, S.U., Vaidya, B. et al. Performance of concanavalin A-immobilized on polyacrylate beads for the detection of human norovirus and hepatitis A virus in fecal specimens. Food Sci Biotechnol 29, 1727–1733 (2020). https://doi.org/10.1007/s10068-020-00833-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-020-00833-4

Keywords