Anti-adipogenic effect of Lactobacillus fermentum MG4231 and MG4244 through AMPK pathway in 3T3-L1 preadipocytes

Abstract

This study evaluated the anti-adipogenic effects and mechanisms underlying the action of Lactobacillus fermentum MG4231 and MG4244 strains on adipogenesis and lipid accumulation in 3T3-L1 preadipocytes. Treatment with cell-free extracts (CFEs) from the two strains reduced lipid accumulation and intracellular triglyceride production in 3T3-L1 adipocytes by more than 50%. The inhibitory effects of L. fermentum on lipid accumulation were mediated by the downregulation of FAS and aP2 resulting from the inhibition of PPARγ and C/EBPα gene expression. Moreover, AMPK and HSL phosphorylation was upregulated by CFE treatment. These results indicated that the anti-adipogenic and lipolysis activities of L. fermentum strains were caused by increased AMPK and HSL phosphorylation. Both strains displayed high leucine arylamidase and β-galactosidase enzymatic activity, with excellent adhesion to epithelial cells. Therefore, we identified L. fermentum as potential new probiotics for the prevention of obesity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CFE:

Cell-free extract

DEX:

Dexamethasone

IBMX:

Isobutylmethylxanthine

DMEM:

Dulbecco modified Eagle’s medium

FBS:

Fetal bovine serum

TG:

Triglyceride

MTT:

Tetrazolium bromide salt

PPARγ:

Peroxisome proliferator-activated receptor γ

C/EBPα:

CCAAT/enhancer-binding protein α

FAS:

Fatty acid synthase

aP2:

Adipose-specific fatty acid-binding protein

SREBP1:

Sterol regulatory element-binding protein 1

LPL:

Lipoprotein lipase

ACC:

Acetyl CoA carboxylase

AMPK:

AMP-activated protein kinase

p-AMPK:

Phospho-AMP-activated protein kinase

HSL:

Hormone-sensitive lipase

p-HSL:

Phospho-hormone- sensitive lipase

References

  1. Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535: 85-93 (2016)

    PubMed  PubMed Central  Google Scholar 

  2. Blüher M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15: 288-298 (2019)

    PubMed  Google Scholar 

  3. Brun RP, Kim JB, Hu E, Altiok S, Spiegelman BM. Adipocyte differentiation: a transcriptional regulatory cascade. Curr. Opin. Cell Biol. 8: 826-832 (1996)

    CAS  PubMed  Google Scholar 

  4. Carmen GY, Víctor SM. Signalling mechanisms regulating lipolysis. Cell Signal. 18: 401-408 (2006)

    CAS  PubMed  Google Scholar 

  5. Castro-Gonzalez JM, Castro P, Sandoval H, Castro-Sandoval D. Probiotic Lactobacilli precautions. Front Microbiol. 10: 375 (2019)

    PubMed  PubMed Central  Google Scholar 

  6. Colombo M, Castilho NPA, Todorov SD, Nero LA. Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiol. 18: 219 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, Vaahtomeri K, Auchli Y, Rechsteiner H, Brunisholz RA, Viollet B, Makela TP, Wallimann T, Neumann D, Krek W. PKA phosphorylates and inactivates AMPK alpha to promote efficient lipolysis. EMBO J. 29: 469-481 (2010)

    CAS  PubMed  Google Scholar 

  8. Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS ONE. 8: e63388 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20: 242-258 (2019)

    CAS  PubMed  Google Scholar 

  10. Gioacchini G, Rossi G, Camevali O. Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Sci. Rep. 7: 1261 (2017)

    PubMed  PubMed Central  Google Scholar 

  11. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809 (1998)

    CAS  PubMed  Google Scholar 

  12. Husain Q. Beta galactosidases and their potential applications: a review. Crit. Rev. Biotechnol. 30: 41-62 (2010)

    CAS  PubMed  Google Scholar 

  13. Iwamoto K, Kamo S, Takada Y, Ieda A, Yamashita T, Sato T, Zaima N, Moriyama T. Soyasapogenols reduce cellular triglyceride levels in 3T3-L1 mouse adipocyte cells by accelerating triglyceride lipolysis. Biochem. Biophys. Rep. 16: 44-49 (2018)

    PubMed  PubMed Central  Google Scholar 

  14. Jang HM, Han SK, Kim JK, Oh SJ, Jang HB, Kim DH. Lactobacillus sakei alleviates high-fat-diet-induced obesity and anxiety in mice by inducing AMPK activation and SIRT1 expression and inhibiting gut microbiota-mediated NF-κB activation. Mol. Nutr. Food Res. 63: e1800978 (2019)

    PubMed  Google Scholar 

  15. Kang CH, Jeong YA, Han SH, Kim JS, Kim YG, Park HM, Choi SI, Paek NS. In vitro probiotic evaluation of potential antiobesity lactic acid bacteria isolated from human vagina and shellfish. Biotechnol. Bioprocess. Eng. 33: 161-167 (2018)

    Google Scholar 

  16. Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: a review. J. Food Drug Anal. 26: 927-939 (2018)

    Google Scholar 

  17. Kim S, Huang E, Park S, Holzapfel W, Lim SD. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum K10. Korean J. Food Sci. Anim. 38: 554-569 (2018)

    Google Scholar 

  18. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev. 34: 199-230 (2010)

    CAS  PubMed  Google Scholar 

  19. Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, Fusek J, Rodrigo L, Kruzliak P. Probiotics in prevention and treatment of obesity: a critical view. Nutr. Metab. 13: 14 (2016)

    Google Scholar 

  20. Lazar AD, Dinescu S, Costache M. Adipose tissue engineering and adipogenesis: a review. Rev. Biol. Biomed. Sci. 1: 17-26 (2018)

    Google Scholar 

  21. Lee SJ, Depoortere I, Hatt H. Therapeutic potential of ectopic olfactory and taste receptors. Nat. Rev. Drug Discov. 18: 116-138 (2019)

    CAS  PubMed  Google Scholar 

  22. Mandard S, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. Cell. Mol. Life Sci. 61: 393-416 (2004)

    CAS  PubMed  Google Scholar 

  23. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur. J. Nutr. 53: 599-606 (2014)

    PubMed  Google Scholar 

  24. Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional regulation of adipogenesis. Compr. Physiol. 7: 635-674 (2017)

    PubMed  Google Scholar 

  25. Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H. Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol. Lett. 334: 1-15 (2012)

    CAS  PubMed  Google Scholar 

  26. Ogawa A, Kobayashi T, Sakai F, Kadooka Y, Kawasaki Y. Lactobacillus gasseri SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects. Lipids Health Dis. 14: 20 (2015)

    PubMed  PubMed Central  Google Scholar 

  27. Park DY, Ahn YT, Huh CS, Jeon SM, Choi MS. The inhibitory effect of Lactobacillus plantarum KY1032 cell extract on the adipogenesis of 3T3-L1 cells. J. Med. Food 14: 670-675 (2011)

    CAS  PubMed  Google Scholar 

  28. Park SS, Lee YJ, Song S, Kim B, Kang H, Oh S, Kim E. Lactobacillus acidophilus NS1 attenuates diet-induced obesity and fatty liver. J. Endocrinol. 237: 87-100 (2018)

    CAS  PubMed  Google Scholar 

  29. Patten DA, Laws AP. Lactobacillus-produced exopolysaccharides and their potential health benefits: A review. Benef. Microbes. 6: 457-471 (2015)

    CAS  PubMed  Google Scholar 

  30. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Adv. Nutr.10: S49-S66 (2019)

    PubMed  PubMed Central  Google Scholar 

  31. Polak-Berecka M, Waśko A, Paduch R, Skrzypek T, Sroka-Bartnicka A. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Anton. Leeuw. Int. J. G. 106: 751–762 (2014)

    CAS  Google Scholar 

  32. Prusty D, Park BF, Davis KE, Farmer SR. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 277: 46226-46232 (2002)

    CAS  PubMed  Google Scholar 

  33. Rapold RA, Wueest S, Knoepfel A, Schoenle EJ, Konrad D. Fas activates lipolysis in a Ca2+-CaMKII-dependent manner in 3T3-L1 adipocytes. J. Lipid Res. 54: 63-70 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ricci A, Levante A, Cirlini M, Calani L, Bernini V, Rio DD, Galaverna G, Neviani E, Lazzi C. The influence of viable cells and cell-free extracts of Lactobacillus casei on volatile compounds and polyphenolic profile of elderberry juice. Front Microbiol. 9: 2784 (2018)

    PubMed  PubMed Central  Google Scholar 

  35. Rizzatti V, Boschi F, Pedrotti M, Zoico E, Sbarbati A, Zamboni M. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution. Eur. J. Histochem. 57: e24 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosen E, Eguchi J, Xu Z. Transcriptional targets in adipocyte biology. Expert Opin. Ther. Target 13: 975-986 (2009)

    CAS  Google Scholar 

  37. Saadatzadeh A, Fazeli MR, Jamalifar H, Dinarvand R. Probiotic properties of lyophilized cell free extract of Lactobacillus casei. Jundishapur J. Nat. Pharm. Prod. 8: 131-137 (2013)

    PubMed  PubMed Central  Google Scholar 

  38. Schwartz M, Seeley RJ, Zeltser LM, Drewnowski AD, Ravussin E, Redman LM, Leibel RL. Obesity pathogenesis: an endocrine society scientific statement. Endocr. Rev. 38: 267-296 (2017)

    PubMed  PubMed Central  Google Scholar 

  39. Seo JW, Yang HJ, Jeong SJ, Ryu MS, Ha G, Jeong SY, Jeong DY. Characterization of Lactobacillus brevis SCML 432 isolated from Meju in Sunchang and optimization of its culture conditions by statistical methods. Korean J. Food Preserv. 25: 397-410 (2018)

    Google Scholar 

  40. Smid EJ, Kleerebezem M. Production of aroma compounds in lactic fermentations. Annu. Rev. Food Sci. Technol. 5: 313-326 (2014)

    CAS  PubMed  Google Scholar 

  41. Wlodarczyk M, Nowicka G. Obesity, DNA damage, and development of obesity-related diseases. Int. J. Mol. Sci. 20: 1146 (2019)

    CAS  PubMed Central  Google Scholar 

  42. Wu CC, Weng WL, Lai WL, Tsai HP, Liu WH, Lee MH, Tsai YC. Effect of Lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evid-Based Complem. Alter 2015: 391767 (2015)

    Google Scholar 

  43. Zhang L, Li N, Caicedo R., Neu J. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-α-induced interleukin-8 production in Caco-2 cells. J. Nutr. 135: 1752-1756 (2005).

    CAS  PubMed  Google Scholar 

  44. Zhang Z, Zhou Z, Li Y, Zhou L, Ding Q, Xu L. Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Sci. Rep. 6: 36083 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zommiti M, Connil N, Hamida JB, Ferchichi M. Probiotic characteristics of Lactobacillus curvatus DN317, a strain isolated from chicken ceca. Probiotics Antimicrob. 9: 415-424 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a project for Collabo R&D between Industry, Academy, and Research Institute funded by the Korea Ministry of SMEs and Startups in 2019 (Project No. S2717946).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gun-Hee Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Choi, SI., Jang, M. et al. Anti-adipogenic effect of Lactobacillus fermentum MG4231 and MG4244 through AMPK pathway in 3T3-L1 preadipocytes. Food Sci Biotechnol 29, 1541–1551 (2020). https://doi.org/10.1007/s10068-020-00819-2

Download citation

Keywords

  • L. fermentum
  • MG4231
  • MG4244
  • Adipogenesis
  • Probiotics