Evolutionary concepts in the functional biotics arena: a mini-review

Abstract

Over the years, the attempts to elucidate the role of beneficial microorganisms in shaping human health are becoming fairly apparent. The functional impact conferred by such microbes is not only transmitted by viable cells or their metabolites but also through non-viable cells. Extensive research to unveil the protective action of such wonder bugs has resulted in categorizing the beneficial microflora and their bioactive metabolites into a variety of functional biotic concepts based on their intended applications in various forms. In the modern era, these are often termed as probiotics, prebiotics, synbiotics, postbiotics, next-generation probiotics, psychobiotics, oncobiotics, pharmabiotics, and metabiotics. Currently, the concept of traditional probiotics is being widened to include microbes beyond lactic acid bacteria. Indeed, this diversification has broadened the functional food portfolio from food to pharmaceuticals. In this context, the present review aims to summarize the existing biotic concepts and their differences thereof.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aguilar-Toala JE, Garcia-Varela R, Garcia HS, Mata-Haro V, Gonzalez-Cordova AF, Vallejo-Cordoba B, Hernandez-Mendoza A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 75: 105-14 (2018)

    CAS  Article  Google Scholar 

  2. Akrami R, Iri Y, Rostami HK, Mansour MR. Effect of dietary supplementation of fructooligosaccharide (FOS) on growth performance, survival, Lactobacillus bacterial population and hemato-immunological parameters of stellate sturgeon (Acipenser stellatus) juvenile. Fish Shellfish Immun. 35: 1235-1239 (2013)

    CAS  Article  Google Scholar 

  3. Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. B. 174: 651-660 (2017)

    CAS  Article  Google Scholar 

  4. Alvarez-Calatayud G, Margolles A. Dual-coated lactic acid bacteria: An emerging innovative technology in the field of probiotics. Fut. Microbiol. 11: 467-475 (2016)

    CAS  PubMed  Article  Google Scholar 

  5. Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract. Res. Cl. Ga. 30: 119-131 (2016)

    Article  Google Scholar 

  6. Anand S, Mandal S, Singh KS, Patil P, Tomar SK. Synbiotic combination of Lactobacillus rhamnosus NCDC 298 and short chain fructooligosaccharides prevents enterotoxigenic Escherichia coli infection. LWT-Food Sci. Technol. 98: 329-34 (2018)

    CAS  Article  Google Scholar 

  7. Armour CR, Nayfach S, Pollard KS, Sharpton TJ. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. MSystems 4: 00332-18 (2019)

    Article  Google Scholar 

  8. Awasti N, Tomar SK, Pophaly SD, Lule VK, Singh TP, Anand S. Probiotic and functional characterization of bifidobacteria of Indian human origin. J. Appl. Microbiol. 120: 1021-1032 (2016)

    CAS  PubMed  Article  Google Scholar 

  9. Basavaprabhu HN, Sonu KS, Prabha R. Mechanistic insights into the action of probiotics against bacterial vaginosis and its mediated preterm birth: An overview. Microb. Pathog. 141: 104029 (2020)

    CAS  PubMed  Article  Google Scholar 

  10. Batista AL, Silva R, Cappato LP, Ferreira MV, Nascimento KO, Schmiele M, Esmerino EA, Balthazar CF, Silva HL, Moraes J, Pimentel TC. Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. J. Funct. Foods 38: 242-250 (2017)

    CAS  Article  Google Scholar 

  11. Behare P, Singh R, Singh RP. Exopolysaccharide-producing mesophilic lactic cultures for preparation of fat-free Dahi—An Indian fermented milk. J. Dairy Res. 76: 90-97 (2009)

    CAS  PubMed  Article  Google Scholar 

  12. Behare PV, Singh R, Nagpal R, Rao KH. Exopolysaccharides producing Lactobacillus fermentum strain for enhancing rheological and sensory attributes of low-fat dahi. J. Food Sci. Technol. 50: 1228-1232 (2013)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Behare PV, Singh R, Tomar SK, Nagpal R, Kumar M, Mohania D. Effect of exopolysaccharide-producing strains of Streptococcus thermophilus on technological attributes of fat-free lassi. J. Dairy Sci. 93: 2874-2879 (2010)

    CAS  PubMed  Article  Google Scholar 

  14. Behera SS, Panda SK. Ethnic and industrial probiotic foods and beverages: Efficacy and acceptance. Curr. Opin. Food Sci. 32: 29-36 (2020)

    Article  Google Scholar 

  15. Beniwal A, Semwal A, Navani NK. Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Front. Microbiol. 10: 502 (2019)

    PubMed  PubMed Central  Article  Google Scholar 

  16. Bhat MI, Kapila S, Kapila R. Lactobacillus fermentum (MTCC-5898) supplementation renders prophylactic action against Escherichia coli impaired intestinal barrier function through tight junction modulation. LWT-Food Sci. Technol. 123: 109118 (2020)

    CAS  Article  Google Scholar 

  17. Bhat MI, Sowmya K, Kapila S, Kapila R. Potential probiotic Lactobacillus rhamnosus (MTCC-5897) inhibits Escherichia coli impaired intestinal barrier function by modulating the host tight junction gene response. Probiotics Antimicrob. Proteins 15: 1-2 (2019)

    Google Scholar 

  18. Cai Z, Xu P, Wu Z, Pan D. Anti-inflammatory activity of surface layer protein SlpA of Lactobacillus acidophilus CICC 6074 in LPS-induced RAW 264.7 cells and DSS-induced mice colitis. J. Funct. Foods 51:16-27 (2018)

    CAS  Article  Google Scholar 

  19. Casiraghi MC, Canzi E, Zanchi R, Donati E, Villa L. Effects of a synbiotic milk product on human intestinal ecosystem. J. Appl. Microbiol. 103: 499-506 (2007)

    CAS  PubMed  Article  Google Scholar 

  20. Chugh B, Kamal-Eldin A. Bioactive compounds produced by probiotics in food products. Curr. Opin. Food Sci. 32: 76-82 (2020)

    Article  Google Scholar 

  21. Coppa GV, Bruni S, Morelli L, Soldi S, Gabrielli O. The first prebiotics in humans: Human milk oligosaccharides. J. Clin. Gastroenterol. 38: 80-83 (2004)

    Article  Google Scholar 

  22. Delves-Broughton J, Weber G. Nisin, natamycin and other commercial fermentates used in food biopreservation. pp. 63-99, In: Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation, Lacroix C (ed), Woodhead Publisher, Cambridge, UK (2011)

    Google Scholar 

  23. Di R, Vakkalanka MS, Onumpai C, Chau HK, White A, Rastall RA, Yam K, Hotchkiss Jr AT. Pectic oligosaccharide structure-function relationships: Prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT-29 cells. Food Chem. 227: 245-254 (2017)

    CAS  PubMed  Article  Google Scholar 

  24. Dinan TG, Stanton C, Cryan JF. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry 74: 720-726 (2013)

    CAS  PubMed  Article  Google Scholar 

  25. Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, Namdar A. Importance of probiotics in the prevention and treatment of colorectal cancer. J. Cell. Physiol. 234: 17127-17143 (2019)

    CAS  PubMed  Article  Google Scholar 

  26. Fellows R, Varga-Weisz P. Chromatin dynamics and histone modifications in the intestinal microbiota-host crosstalk. Mol. Metab. 27: 30951-30956 (2019)

    Google Scholar 

  27. Fenster K, Freeburg B, Hollard C, Wong C, Ronhave LR, Ouwehand AC. The production and delivery of probiotics: A review of a practical approach. Microorganisms 7: 83 (2019)

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  28. Galvez A, Lopez RL, Pulido RP, Burgos MJ. Natural antimicrobials for food biopreservation. pp. 221-239. In: Food Biopreservation, Springer Briefs in Food, Health, and Nutrition. Galvez AM, Grande Burgos MJ, Lucas Lopez R, Perez Pulido R (ed), Springer, New York, NY (2014)

  29. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastro. Hepat. 14: 491 (2017)

    Article  Google Scholar 

  30. Glendinning L, Free A. Supra-organismal interactions in the human intestine. Front. Cell. Infect. Microbiol. 4: 47 (2014)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Glibowski P, Kowalska A. Rheological, texture and sensory properties of kefir with high performance and native inulin. J. Food Eng. 111: 299-304 (2012)

    CAS  Article  Google Scholar 

  32. Grimoud J, Durand H, Courtin C, Monsan P, Ouarne F, Theodorou V, Roques C. In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics. Anaerobe 16: 493-500 (2010)

    CAS  PubMed  Article  Google Scholar 

  33. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastro. Hepat. 11: 506-14 (2014)

    Article  Google Scholar 

  34. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8: 172-84 (2017)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Isik U, Boyacioglu D, Capanoglu E, Erdil DN. Frozen yogurt with added inulin and isomalt. J. Dairy Sci. 94: 1647-1656 (2011)

    CAS  PubMed  Article  Google Scholar 

  36. Kincaid HJ, Nagpal R, Yadav H. Microbiome-immune-metabolic axis in the epidemic of childhood obesity: Evidence and opportunities. Obes. Rev. 21: e12963 (2020)

    PubMed  Article  Google Scholar 

  37. Kisan BS, Kumar R, Ashok SP, Sangita G. Probiotic foods for human health: A review. J. Pharmacogn. Phytochem. 8: 967-971 (2019)

    Google Scholar 

  38. Kodali VP, Sen R. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol. J. Healthcare Nutr. Technol. 3: 245-251 (2008)

    CAS  Google Scholar 

  39. Koo OK, Amalaradjou MAR, Bhunia AK. Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS One 7: e29277 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Kotha K, Korrapati K, Reddy K. Effect of feeding normal and high cholesterol diet incorporated with encapsulated and non-encapsulated Bifidobacterium bifidum 235 and prebiotics on serum triglycerides of SD rats. Int. J. Curr. Microbiol. App. Sci. 7: 71-79 (2018)

    Article  CAS  Google Scholar 

  41. Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, Kumar P, Poddar D, Aggarwal PK, Henry CJ, Jain S, Yadav H. Cancer-preventing attributes of probiotics: An update. Int. J. Food Sci. Nutr. 61: 473-96 (2010)

    CAS  PubMed  Article  Google Scholar 

  42. Kumar M, Nagpal R, Verma V, Kumar A, Kaur N, Hemalatha R, Gautam SK, Singh B. Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr. Rev. 71: 23-34 (2013)

    PubMed  Article  Google Scholar 

  43. Kumar M, Yadav AK, Verma V, Singh B, Mal G, Nagpal R, Hemalatha R. Bioengineered probiotics as a new hope for health and diseases: An overview of potential and prospects. Future Microbiol. 11: 585-600 (2016)

    CAS  PubMed  Article  Google Scholar 

  44. Langella P, Martin R. Emerging health concepts in the probiotics field: Streamlining the definitions. Front. Microbiol. 10: 1047 (2019)

    PubMed  PubMed Central  Article  Google Scholar 

  45. LeBegue C, Love BL, Wyatt MD. Microbes as drugs: The potential of pharmabiotics. J. Human Pharm. Drug Ther. 40: 102-106 (2019)

    Article  Google Scholar 

  46. Lerner A, Shoenfeld Y, Matthias T. Probiotics: If it does not help it does not do any harm. Really?. Microorganisms 7: 104 (2019)

    CAS  Article  Google Scholar 

  47. Lindstrom C, Holst O, Nilsson L, Oste R, Andersson KE. Effects of Pediococcus parvulus 2.6 and its exopolysaccharide on plasma cholesterol levels and inflammatory markers in mice. Amb. Express 2: 66 (2012)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Maftei NM. Probiotic, prebiotic and synbiotic products in human health. pp. 1-19, In Frontiers and New trends in the science of fermented food and beverages. Solís-Oviedo RL and Pech-Canul ADLC (ed), IntechOpen, London, UK (2019)

  49. Malashree L, Angadi V, Yadav S, Prabha R. Postbiotics—One step ahead of probiotics. Int. J. Current Microbiol. Appl. Sci. 8: 2049-2053 (2019)

    CAS  Article  Google Scholar 

  50. Mallappa RH, Singh DK, Rokana N, Pradhan D, Batish VK, Grover S. Screening and selection of probiotic Lactobacillus strains of Indian gut origin based on assessment of desired probiotic attributes combined with principal component and heatmap analysis. LWT-Food Sci. Technol. 105: 272-281 (2019)

    CAS  Article  Google Scholar 

  51. Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9: 1021 (2017)

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  52. Martin R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, Azevedo V, Chatel JM, Sokol H. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol. 8: 1226 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  53. Mays ZJ, Chappell TC, Nair NU. Quantifying and engineering mucus adhesion of probiotics. ACS Synth. Biol. 9: 356-367 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Mishra SP, Karunakar P, Taraphder S, Yadav H. FFAR2/3 as Microbial metabolite sensors to shape host health: Pharmacophysiological view. https://www.preprints.org/manuscript/202005.0037/v1. Accessed August 17, 2020

  55. Nagpal R, Kaur A. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol. Food Nutr. 50: 63-8 (2011)

    PubMed  Article  Google Scholar 

  56. Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H. Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiol. Lett. 334: 1-15 (2012)

    CAS  PubMed  Article  Google Scholar 

  57. Nagpal R, Tsuji H, Takahashi T, Kawashima K, Nagata S, Nomoto K, Yamashiro Y. Sensitive quantitative analysis of the meconium bacterial microbiota in healthy term infants born vaginally or by cesarean section. Front. Microbiol. 7: 1997 (2016)

    PubMed  PubMed Central  Article  Google Scholar 

  58. Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, Yamashiro Y. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants. Benef. Microb. 8: 353-365 (2017)

    CAS  PubMed  Article  Google Scholar 

  59. Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S, Kitzman DW, Becton T, Read R, Yadav H. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci. Rep. 8: 12649 (2019)

    Article  CAS  Google Scholar 

  60. Nagpal R, Yadav H, Marotta F. Gut microbiota: The next-gen frontier in preventive and therapeutic medicine? Front. Med. 1: 15 (2014)

    Article  Google Scholar 

  61. Nazzaro F, Fratianni F, Sada A, Orlando P. Synbiotic potential of carrot juice supplemented with Lactobacillus spp. and inulin or fructo-oligosaccharides. J. Sci. Food Agric. 88: 2271-2276 (2008)

    CAS  Article  Google Scholar 

  62. Nimgampalle M, Kuna Y. Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J. Clin. Diagn. Res. 11: KC01 (2017)

  63. O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2: 1-6 (2017)

    Article  CAS  Google Scholar 

  64. Ohara T, Mori T. Antiproliferative effects of short-chain fatty acids on human colorectal cancer cells via gene expression inhibition. Anticancer Res. 39: 4659-4666 (2019)

    CAS  PubMed  Article  Google Scholar 

  65. Ozturkoglu-Budak S, Akal HC, Buran İ, Yetişemiyen A. Effect of inulin polymerization degree on various properties of synbiotic fermented milk including Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12. J. Dairy Sci. 102: 6901-6913 (2019)

    CAS  PubMed  Article  Google Scholar 

  66. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. Mys. 52: 7577-7587 (2015)

    CAS  Article  Google Scholar 

  67. Pares-Bofill I. The oncomicrobiotics and the influence of the microbiota in the carcinogenesis. Undergraduate thesis, University Barcelona, Spain, (2019)

  68. Patra F, Duary R, Ganguly S, Das A. Engineered probiotics and pharmabiotics: Application in therapeutics and prophylaxis. Indian J. Dairy Sci. 70: 137-144 (2017)

    Google Scholar 

  69. Patterson E, Cryan JF, Fitzgerald GF, Ross RP, Dinan TG, Stanton C. Gut microbiota, the pharmabiotics they produce and host health. Proc. Nutr. Soc. 73: 477-89 (2014)

    CAS  PubMed  Article  Google Scholar 

  70. Piomelli D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 4: 873-884 (2003)

    CAS  PubMed  Article  Google Scholar 

  71. Pirbaglou M, Katz J, de Souza RJ, Stearns JC, Motamed M, Ritvo P. Probiotic supplementation can positively affect anxiety and depressive symptoms: A systematic review of randomized controlled trials. Nutr. Res. 36: 889-898 (2016)

    CAS  PubMed  Article  Google Scholar 

  72. Pradhan D, Mallappa RH, Grover S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108: 106872 (2020)

    CAS  Article  Google Scholar 

  73. Pradhan D, Singh R, Tyagi A, Rashmi HM, Batish VK, Grover S. Assessing the safety and efficacy of Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 in colitis mouse model. Probiotics Antimicrob. Proteins 11: 910-920 (2019)

    PubMed  Article  Google Scholar 

  74. Rosales-Mendoza S, Angulo C, Meza B. Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol. 34: 124-136 (2016)

    CAS  PubMed  Article  Google Scholar 

  75. Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A, Brencicova E, Escovar-Fadul X, Nguyen JM, Cadungog MG, Zhang R. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27: 27-40 (2015)

    CAS  PubMed  Article  Google Scholar 

  76. Sameer B, Ganguly S, Khetra Y, Sabikhi L. Development and characterization of probiotic buffalo milk ricotta cheese. LWT-Food Sci. Technol. 121: 108944 (2020)

    CAS  Article  Google Scholar 

  77. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci. 39: 763-81 (2016)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Sharma M, Shukla G. Metabiotics: One step ahead of probiotics; An insight into mechanisms involved in anticancerous effect in colorectal cancer. Front. Microbiol. 7: 1940 (2016)

    PubMed  PubMed Central  Google Scholar 

  79. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339: 211-214 (2013)

    CAS  PubMed  Article  Google Scholar 

  80. Suzuki S, Yokota K, Igimi S, Kajikawa A. Comparative analysis of immunological properties of S-layer proteins isolated from Lactobacillus strains. Microbiology 165: 188-196 (2019)

    CAS  PubMed  Article  Google Scholar 

  81. Tursi A, Brandimarte G, Papa A, Giglio A, Elisei W, Giorgetti GM, Forti G,Morini S, Hassan C, Pistoia MA and Modeo ME. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: A double-blind, randomized, placebo-controlled study. Am. J. Gastroenterol. Suppl. 105: 2218 (2010)

    Article  Google Scholar 

  82. US Food and Drug Administration. Early clinical trials with live biotherapeutic products: Chemistry, manufacturing, and control information. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/early-clinical-trials-live-biotherapeutic-products-chemistry-manufacturing-and-control-information. Accessed August 17, 2020

  83. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C. Bacterial neuroactive compounds produced by psychobiotics. Vol. 817, pp. 221-239. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease, Advances in Experimental Medicine and Biology. Lyte M., Cryan J. (ed), Springer, New York, NY (2014)

  84. Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K, Zhu X, Wang Z, McClain DA, Kritchevsky SB, Kitzman DW, Yadav H. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: From C. elegans to mice. Geroscience 42: 333-352 (2020)

    CAS  PubMed  Article  Google Scholar 

  85. Wollowski I, Rechkemmer G, Pool-Zobel BL. Protective role of probiotics and prebiotics in colon cancer. Am. J. Clin. Nutr. 73: 451-455 (2001)

    Article  Google Scholar 

  86. Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, Kentish S, Xie P, Morrison M, Wesselingh SL, Rogers GB. Inflammasome signaling affects anxiety-and depressive-like behavior and gut microbiome composition. Mol. Psychiatr. 21: 797-805 (2016)

    CAS  Article  Google Scholar 

  87. Xie C, Coda R, Chamlagain B, Edelmann M, Deptula P, Varmanen P, Piironen V, Katina K. In situ fortification of vitamin B12 in wheat flour and wheat bran by fermentation with Propionibacterium freudenreichii. J. Cereal Sci. 81: 133-139 (2018)

    CAS  Article  Google Scholar 

  88. Zendeboodi F, Khorshidian N, Mortazavian AM, da CruzAG. Probiotic: Conceptualization from a new approach. Curr. Opin. Food Sci. 32: 103-123 (2020)

  89. Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Micr. 70: 2782-2858 (2020)

    Article  Google Scholar 

  90. Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37:179-185 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to the Director, ICAR-National Dairy Research Institute, Karnal, Haryana, India and Science & Engineering Research Board (SERB), New Delhi, Government of India (EMR/2016/001399).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pradip V. Behare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nataraj, B.H., Shivanna, S.K., Rao, P. et al. Evolutionary concepts in the functional biotics arena: a mini-review. Food Sci Biotechnol (2020). https://doi.org/10.1007/s10068-020-00818-3

Download citation

Keywords

  • Probiotics
  • Prebiotics
  • Synbiotics
  • Postbiotics
  • Psychobiotics
  • Next-generation probiotics
  • Functional food