Synergistic antimicrobial properties of nanoencapsulated clove oil and thymol against oral bacteria

Abstract

This study aimed to improve the antimicrobial activity of natural extracts against oral bacteria by synergistic combination and nanoencapsulation. Among five natural antimicrobials: clove oil, thymol, naringin, naringenin, and licorice, clove oil and thymol were selected by comparing the antimicrobial activities against Streptococcus mutans and Streptococcus sobrinus before and after nanoencapsulation. The combination of clove oil and thymol (CLTY) was nanoencapsulated using chitosan and poly-γ-glutamic acid. While free CLTY showed additive and synergistic antimicrobial activity against S. mutans and S. sobrinus, respectively, CLTY nanoparticles (NPs) exhibited synergistic activity against both strains in a time-kill kinetic assay. CLTY NPs significantly decreased the growth of salivary S. mutans during testing, compared with free CLTY in the mouth rinse test. These results indicate that nanoencapsulation can significantly increase the synergistic antimicrobial activity of CLTY and maintain its antimicrobial activity in oral cavities for a longer time.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ajagannanavar SL, Battur H, Shamarao S, Sivakumar V, Patil PU, Shanavas P. Effect of aqueous and alcoholic licorice (Glycyrrhiza glabra) root extract against streptococcus mutans and lactobacillus acidophilus in comparison to chlorhexidine: an in vitro study. J. Int. Oral Health. 6: 29-34 (2014)

    PubMed  PubMed Central  Google Scholar 

  2. Anesini C, Ferraro GE, Filip R. Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J. Agr. Food Chem. 56: 9225-9229 (2008)

    CAS  Article  Google Scholar 

  3. Arunakul M, Thaweboon B, Thaweboon S, Asvanund Y, Charoenchaikorn K. Efficacy of xylitol and fluoride mouthrinses on salivary mutans streptococci. Asian Pac. J. Trop. Biomed. 1: 488-490 (2011)

    Article  Google Scholar 

  4. Bahrami A, Delshadi R, Assadpour E, Jafari SM, Williams L. Antimicrobial-loaded nanocarriers for food packaging applications. Adv. Colloid Interface Sci. 278: 102140 (2020)

    CAS  Article  Google Scholar 

  5. Bhawana, Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J. Agr. Food Chem. 59: 2056-2061 (2011)

  6. Bidault PD, Chandad F, Grenier D. Risk of bacterial resistance associated with systemic antibiotic therapy in periodontology. J. Can. Den. Assoc. 73: 721-725 (2007)

    Google Scholar 

  7. Botelho M, Nogueira N, Bastos G, Fonseca S, Lemos T, Matos F, Montenegro D, Heukelbach J, Rao V, Brito G. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res. 40: 349-356 (2007)

    CAS  Article  Google Scholar 

  8. Buescher JM, Margaritis A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit. Rev. Biotechnol. 27: 1-19 (2007)

    CAS  Article  Google Scholar 

  9. Cha S-M, Kim G-U, Cha J-D. Synergistic antimicrobial activity of apigenin against oral pathogens. Int. J. Eng. Res. Sci. 2: 27-37 (2016)

    Google Scholar 

  10. Claydon N, Addy M, Adams G, Smith S, Bosma M, North M, Moran J. A comparison of two chlorhexidine gel brushing regimens and a conventional toothpaste brushing regimen for the development of tooth staining over a 6-week period. Int. J. Dent. Hyg. 4: 183-188 (2006)

    CAS  Article  Google Scholar 

  11. de Carvalho FG, Silva DS, Hebling J, Spolidorio LC, Spolidorio DMP. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch. Oral Biol. 51: 1024-1028 (2006)

    Article  Google Scholar 

  12. Ekstrand K, Bruun G, Bruun M. Plaque and gingival status as indicators for caries progression on approximal surfaces. Caries research 32: 41-45 (1997)

    Article  Google Scholar 

  13. Eliopoulos G, Eliopoulos C. Antibiotic combinations: should they be tested? Clin. Microbiol. Rev. 1: 139-156 (1988)

    CAS  Article  Google Scholar 

  14. Eslami H, Ariamanesh N, Ariamanesh A, Kafil HS. Synergistic effect of honey and Azarian propolis on oral microorganisms: an in vitro study. J. Adv. Oral Res. 7: 31-36 (2016)

    Google Scholar 

  15. Fani M, Kohanteb J. In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. J. Evidence-Based Complementary Altern. Med. 22: 660-666 (2017)

    CAS  Article  Google Scholar 

  16. Fu Y, Zu Y, Chen L, Shi X, Wang Z, Sun S, Efferth T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 21: 989-994 (2007)

    Article  Google Scholar 

  17. Gafner S, Bergeron C, Villinski JR, Godejohann M, Kessler P, Cardellina JH, Ferreira D, Feghali K, Grenier D. Isoflavonoids and coumarins from Glycyrrhiza uralensis: antibacterial activity against oral pathogens and conversion of isoflavans into isoflavan-quinones during purification. J. Nat. Prod. 74: 2514-2519 (2011)

    CAS  Article  Google Scholar 

  18. Jeon YO, Lee J-S, Lee HG. Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Colloids Surf. B Biointerfaces. 147: 224-233 (2016)

    CAS  Article  Google Scholar 

  19. Jeong M-R, Kim H-Y, Cha J-D. Antimicrobial activity of methanol extract from Ficus carica leaves against oral bacteria. J. Bacteriol. Virol. 39: 97-102 (2009)

    CAS  Article  Google Scholar 

  20. Kim ES, Lee J-S, Lee HG. Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. J. Agr. Food Chem. 64: 4765-4771 (2016)

    CAS  Article  Google Scholar 

  21. Koo H, Rosalen PL, Cury JA, Ambrosano GM, Murata RM, Yatsuda R, Ikegaki M, Alencar SM, Park YK. Effect of a New Variety of Apis mellifera Propolis on Mutans Streptococci. Curr. Microbiol. 41: 192-196 (2000)

    CAS  Article  Google Scholar 

  22. Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob. Agents Chemother. 46: 1302-1309 (2002)

    CAS  Article  Google Scholar 

  23. Lee B-B, Ha Y-M, Shin S-H, Je K-M, Kim S-R, Choi J-S, Choi I-S. Antimicrobial activity of test dentifrice product containing grapefruit seed extract and processed sulfur solution against oral pathogens. J. Life Sci. 19: 956-962 (2009)

    Article  Google Scholar 

  24. Lee J-S, Kim ES, Lee HG. Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids Surf. B Biointerfaces. 154: 171-177 (2017)

    CAS  Article  Google Scholar 

  25. Lee KH, Lee J-S, Kim ES, Lee HG. Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT 101: 138-144 (2019)

    CAS  Article  Google Scholar 

  26. Lee Y-S, Jang K, Cha J-D. Synergistic antibacterial effect between silibinin and antibiotics in oral bacteria. J. Biomed. Biotechnol. 2012: 1-7 (2011)

    Google Scholar 

  27. Lin Y-H, Chung C-K, Chen C-T, Liang H-F, Chen S-C, Sung H-W. Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6: 1104-1112 (2005)

    CAS  Article  Google Scholar 

  28. Liu Y, Sun Y, Xu Y, Feng H, Fu S, Tang J, Liu W, Sun D, Jiang H, Xu S. Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid and chitosan. Int. J. Biol. Macromol. 59: 201-207 (2013)

    CAS  Article  Google Scholar 

  29. Moon S-E, Kim H-Y, Cha J-D. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch. Oral Biol. 56: 907-916 (2011)

    CAS  Article  Google Scholar 

  30. Pandita V, Patthi B, Singla A, Singh S, Malhi R, Vashishtha V. Dentistry meets nature-role of herbs in periodontal care: A systematic review. J. Indian Assoc. Public Health Dent. 12: 148 (2014)

    Article  Google Scholar 

  31. Pei Rs, Zhou F, Ji Bp, Xu J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 74: M379-M383 (2009)

  32. Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey N. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 89: 1-11 (2018)

    CAS  Article  Google Scholar 

  33. Rai M, Paralikar P, Jogee P, Agarkar G, Ingle AP, Derita M, Zacchino S. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: emerging trends and future perspectives. Int. J. Pharm. 519: 67-78 (2017)

    CAS  Article  Google Scholar 

  34. Schelz Z, Molnar J, Hohmann J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77: 279-285 (2006)

    CAS  Article  Google Scholar 

  35. Soares LFJ, do Carmo F, de Almeida BV, Monteiro L, Rodrigues C, Cabral L, de Sousa V. Preparation and evaluation of lidocaine hydrochloride in cyclodextrin inclusion complexes for development of stable gel in association with chlorhexidine gluconate for urogenital use. Int. J. Nanomedicine. 6: 1143-1154 (2011)

  36. Soleimanpour S, Sedighinia FS, Afshar AS, Zarif R, Ghazvini K. Antibacterial activity of Tribulus terrestris and its synergistic effect with Capsella bursa-pastoris and Glycyrrhiza glabra against oral pathogens: an in vitro study. Avicenna J. Phytomed. 5: 210 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang D-W, Yu S-H, Ho Y-C, Huang B-Q, Tsai G-J, Hsieh H-Y, Sung H-W, Mi F-L. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocolloids 30: 33-41 (2013)

    CAS  Article  Google Scholar 

  38. Tsui V, Wong R, Rabie ABM. The inhibitory effects of naringin on the growth of periodontal pathogens in vitro. Phytother. Res. 22: 401-406 (2008)

    CAS  Article  Google Scholar 

  39. Van Strydonck D, Timmerman M, Van Der Velden U, Van Der Weijden G. Plaque inhibition of two commercially available chlorhexidine mouth rinses. Clin. Periodontol. 32: 305-309 (2005)

    Article  Google Scholar 

  40. Wang CS, Arnold RR, Trope M, Teixeira FB. Clinical efficiency of 2% chlorhexidine gel in reducing intracanal bacteria. J. Endod. 33: 1283-1289 (2007)

    Article  Google Scholar 

  41. Windbergs M, Zhao Y, Heyman J, Weitz DA. Biodegradable core–shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc. 135: 7933-7937 (2013)

    CAS  Article  Google Scholar 

  42. Yue J, Yang H, Liu S, Song F, Guo J, Huang C. Influence of naringenin on the biofilm formation of Streptococcus mutans. Int. J. Dent. 76: 24-31 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03933069).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Lee.

Ethics declarations

Conflict of interest

None of the authors of this study has any financial interest or conflict with industries or parties.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, JS., Choi, Y.S. & Lee, H.G. Synergistic antimicrobial properties of nanoencapsulated clove oil and thymol against oral bacteria. Food Sci Biotechnol 29, 1597–1604 (2020). https://doi.org/10.1007/s10068-020-00803-w

Download citation

Keywords

  • Clove oil
  • Thymol
  • Synergistic antimicrobial effect
  • Nanoencapsulation
  • Oral bacteria