Skip to main content

Advertisement

Log in

Antibacterial and in vitro antidementia effects of aronia (Aronia melanocarpa) leaf extracts

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the antibacterial and in vitro antidementia effects of aronia (Aronia melanocarpa) leaf extracts from 3 cultivars (Nero, Viking, and McKenzie) collected at three different stages of maturity (young, harvest, and old). Bacillus cereus was susceptible to the old leaves of cultivars McKenzie and Nero, whereas Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua were not inhibited by any of the extracts. Growth of B. cereus was inhibited by cv. McKenzie, resulting in increased lag time, whereas Nero had both an inhibitory and an inactivation effect. Except for cv. Viking at harvest stage, the acetylcholinesterase and butyrylcholinesterase inhibitory activity of aronia leaf extracts were about 60–70 and 70–80%, respectively. Therefore, aronia leaf is a natural resource with a potentially potent antidementia effect, besides antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adsersen A, Kjølbye A, Dall O, Jäger AK. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg. & Kort. J. Ethnopharmacol. 113: 179-182 (2007)

  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71-79 (2016)

    Article  Google Scholar 

  • Braunlich M, Okstad OA, Slimestad R, Wangensteen H, Malterud KE, Barsett, H. Effects of Aronia melanocarpa constituents on biofilm formation of Escherichia coli and Bacillus cereus. Molecules 18: 14989-14999 (2013)

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-90 (1961)

    Article  CAS  Google Scholar 

  • Gawron-Gzella A, Dudek-Makuch M, Matławska I. DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biol. Cracov. Ser. Bot. 54: 4174-4180 (2012)

    Google Scholar 

  • Jung, YS, Park SJ, Kim JE, Yang SA, Park JH, Kim JH, Jhee KH, Lee SP, Lee IS. A comparative study of GABA, glutamate contents, acetylcholinesterase inhibition and antiradical activity of the methanolic extracts from 10 edible plants. Korean J. Food Sci. Technol. 44: 447-451 (2012)

    Article  Google Scholar 

  • Kim DH, Kim H, Kim J, Bae D, Song KY, Chon JW, Lee JM, Kim SH, Lim HW, Seo KH. Antibacterial activity of crude Aronia melanocarpa (black chokeberry) extracts against Bacillus cereus, Staphylococcus aureus, Cronobacter sakazakii, and Salmonella Enteritidis in various dairy foods: Preliminary study. J. Milk Sci. Biotechnol. 36: 155-163 (2018)

    Article  Google Scholar 

  • Kim NH, Kim HW, Moon H, Rhee MS. Sodium chloride significantly enhances the bactericidal actions of carvacrol and thymol against the halotolerant species Escherichia coli O157: H7, Listeria monocytogenes, and Staphylococcus aureus. LWT-Food Sci. Technol. 122: 109015 (2020a)

    Article  CAS  Google Scholar 

  • Kim SS, Kim SH, Park SH, Kang, DH. Inactivation of Bacillus cereus spores on stainless steel by combined superheated steam and UV-C irradiation treatment. J. Food Prot. 83: 13-16 (2020b)

    Article  Google Scholar 

  • Kokotkiewicz A, Jaremicz Z, Luczkiewicz M. Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J. Med. Food 13: 255-269 (2010)

    Article  CAS  Google Scholar 

  • Liepina I, Nikolajeva V, Jakobsone I, Antimicrobial activity of extracts from fruits of Aronia melanocarpa and Sorbus aucuparia. Environ. Exp. Biol. 11: 195-199 (2013)

    Google Scholar 

  • Ministry of Food and Drug Safety (MFDS). Foodborne disease outbreak. Available at: https://www.foodsafetykorea.go.kr/main.do, Accessed Feb.18.2020 (2020)

  • Nanasombat S, Wimuttigosol P. Antimicrobial and antioxidant activity of spice essential oils. Food Sci. Biotechnol. 20: 45-53 (2011)

    Article  CAS  Google Scholar 

  • Orhan I, Sener B, Choudhary MI, Khalid A. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J. Ethnopharmacol. 91: 57-60 (2004)

    Article  CAS  Google Scholar 

  • Park SH, Chang PS, Ryu S, Kang DH. Development of a novel selective and differential medium for the isolation of Listeria monocytogenes. Appl. Environ. Microbiol. 80: 1020-1025 (2014)

    Article  Google Scholar 

  • Park KM, Jo SK, Yu H, Park JY., Choi SJ, Lee CJ, Chang PS. Erythorbyl laurate as a potential food additive with multi-functionalities: Antibacterial activity and mode of action. Food Cont. 86: 138-145 (2018)

    Article  CAS  Google Scholar 

  • Pirvu L, Hlevca C, Nicu I, Bubueanu C. Comparative studies on analytical, antioxidant, and antimicrobial activities of a series of vegetal extracts prepared from eight plant species growing in Romania. J. Planar Chromatogr. Mod. TLC. 27: 346-356 (2014)

    Article  CAS  Google Scholar 

  • Puupponen‐Pimiä R, Nohynek L, Hartmann‐Schmidlin S, Kähkönen M., Heinonen M., Määttä‐Riihinen K, Oksman‐Caldentey KM. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 94: 991-1000 (2005)

    Article  Google Scholar 

  • Savoia D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 7: 979-990 (2012)

    Article  CAS  Google Scholar 

  • Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J. Agric. Food Chem. 56: 4855-4873 (2008)

    Article  CAS  Google Scholar 

  • Thi ND, Hwang ES. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages. Prev. Nutr. Food Sci. 19: 204-212 (2014)

    Article  Google Scholar 

  • Talesa VN. Acetylcholinesterase in Alzheimer’s disease. Mech. Ageing Dev. 122: 1961-1969 (2001)

    Article  CAS  Google Scholar 

  • Tsuda T. Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res. 56: 159 − 170 (2012)

    Article  CAS  Google Scholar 

  • Vaquero MR, Serravalle LT, De Nadra MM, De Saad AS. Antioxidant capacity and antibacterial activity of phenolic compounds from argentinean herbs infusions. Food Cont. 21: 779-785 (2010)

    Article  Google Scholar 

  • Wangensteen H, Bräunlich M, Nikolic V, Malterud KE, Slimestad R, Barsett H. Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects. J. Funct. Foods 7: 746-752 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (2018R1D1A1B07041905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjae Shin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SS., Shin, Y. Antibacterial and in vitro antidementia effects of aronia (Aronia melanocarpa) leaf extracts. Food Sci Biotechnol 29, 1295–1300 (2020). https://doi.org/10.1007/s10068-020-00774-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-020-00774-y

Keywords

Navigation