Skip to main content
Log in

Effect of storage temperature on the antioxidant activity and catechins stability of Matcha (Camellia sinensis)

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the storage conditions of matcha (Camellia sinensis) according to temperature during 2 months. The moisture content of matcha tend to decrease with increasing temperature. To evaluate the brightness and green value of matcha, changes in L* and G* values were examined. These values decreased with increasing temperature and time. Total phenolic content and total flavonoid content also decreased with increasing temperature and time. ABTS and DPPH radical scavenging activities decreased with the increase in storage temperature and time. The content of catechins such as epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate showed a tendency to decrease gradually according to the storage temperature and time. Also, caffeine and rutin content in matcha significantly decreased according to storage temperature and time. This study could be used as basic data to determine optimal storage conditions by measuring physiological changes according to the temperature conditions of matcha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 104: 1338-1344 (2007)

    Article  CAS  Google Scholar 

  • Bahloul N, Boudhrioua N, Kechaou N. Moisture desorption–adsorption isotherms and isosteric heats of sorption of Tunisian olive leaves (Olea europaea L.). Ind. Crop. Prod. 28: 162-176 (2008)

  • Bailey RG, Nursten HE, McDowell I. Isolation and analysis of a polymeric thearubigin fraction from tea. J. Sci. Food Agric. 59: 365-375 (1992)

    Article  CAS  Google Scholar 

  • Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea—a review. J. Am. Coll. Nutr. 25: 79-99 (2006)

    Article  CAS  Google Scholar 

  • Callemien D, Collin S. Involvement of flavanoids in beer color instability during storage. J. Agric. Food Chem. 55: 9066-9073 (2007)

    Article  CAS  Google Scholar 

  • Chen WR, Zheng JS, Li YQ, Guo WD. Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russ. J. Plant Physiol. 59: 732-740 (2012)

    Article  CAS  Google Scholar 

  • Chen ZY, Zhu QY, Tsang D, Huang Y. Degradation of green tea catechins in tea drinks. J. Agric. Food Chem. 49: 477-482 (2001)

    Article  CAS  Google Scholar 

  • da Costa EM, Filho JMB, do Nascimento TG, Macêdo RO. Thermal characterization of the quercetin and rutin flavonoids. Thermochim. Acta 392: 79-84 (2002)

  • da Silveira TFF, Meinhart AD, Ballus CA, Godoy HT. The effect of the duration of infusion, temperature, and water volume on the rutin content in the preparation of mate tea beverages: an optimization study. Food Res. Int. 60: 241-245 (2014)

    Article  Google Scholar 

  • Djanaguiraman M, Prasad PV, Murugan M, Perumal R, Reddy UK. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ. Exp. Bot. 100: 43-54 (2014)

  • Fan FY, Shi M, Nie Y, Zhao Y, Ye JH, Liang YR. Differential behaviors of tea catechins under thermal processing: Formation of non-enzymatic oligomers. Food Chem. 196: 347-354 (2016)

    Article  CAS  Google Scholar 

  • Ganeshpurkar A, Saluja AK. Protective effect of catechin on humoral and cell mediated immunity in rat model. Int. Immunopharmacol. 54: 261-266 (2018)

    Article  CAS  Google Scholar 

  • Gaur S, Agnihotri R. Green tea: A novel functional food for the oral health of older adults. Geriatr. Gerontol. Int. 14: 238-250 (2014)

    Article  Google Scholar 

  • Haisman DR, Clarke MW. The interfacial factor in the heat-induced conversion of chlorophyll to pheophytin in green leaves. J. Sci. Food Agric. 26: 1111-1126 (1975)

    Article  CAS  Google Scholar 

  • Hibasami H, Komiya T, Achiwa Y, Ohnishi K, Kojima T, Nakanishi K, Akashi K, Hara Y. Induction of apoptosis in human stomach cancer cells by green tea catechins. Oncol. Rep. 5: 527-536 (1998)

    CAS  PubMed  Google Scholar 

  • Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV, Yang CS. Mechanism of action of (−)-epigallocatechin-3-gallate: Auto-oxidation–dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res. 65: 8049-8056 (2005)

    Article  CAS  Google Scholar 

  • Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321-326 (2003)

    Article  CAS  Google Scholar 

  • Komatsu Y, Suematsu S, Hisanobu Y, Saigo H, Matsuda R, Hara K. Effects of pH and temperature on reaction kinetics of catechins in green tea infusion. Biosci. Biotechnol. Biochem. 57: 907-910 (1993)

    Article  CAS  Google Scholar 

  • Kouhila M, Kechaou N, Otmani M, Fliyou M, Lahsasni S. Experimental study of sorption isotherms and drying kinetics of Moroccan Eucalyptus globulus. Dry. Technol. 20: 2027-2039 (2002)

    Article  Google Scholar 

  • Krebbers B, Matser AM, Koets M, Van den Berg RW. Quality and storage-stability of high-pressure preserved green beans. J. Food Eng. 54: 27-33 (2002)

    Article  Google Scholar 

  • Lee JM, Lim SW, Cho SH, Choi SG, Heo HJ, Lee SC. Effect of relative humidity and storage temperature on the quality of green tea powder. J. Korean Soc. Food Sci. Nutr. 38: 83-88 (2009)

    Article  CAS  Google Scholar 

  • Li N, Taylor LS, Ferruzzi MG, Mauer LJ. Kinetic study of catechin stability: effects of pH, concentration, and temperature. J. Agric. Food Chem. 60: 12531-12539 (2012)

    Article  CAS  Google Scholar 

  • Li N, Taylor LS, Ferruzzi MG, Mauer LJ. Color and chemical stability of tea polyphenol (−)-epigallocatechin-3-gallate in solution and solid states. Food Res. Int. 53: 909-921 (2013)

    Article  CAS  Google Scholar 

  • Mohamed LA, Kouhila M, Lahsasni S, Jamali A, Idlimam A, Rhazi M, Aghfir M, Mahrouz M. Equilibrium moisture content and heat of sorption of Gelidium sesquipedale. J. Stored Prod. Res. 41: 199-209 (2005)

    Article  Google Scholar 

  • Moreira R, Chenlo F, Vázquez MJ, Cameán P. Sorption isotherms of turnip top leaves and stems in the temperature range from 298 to 328 K. J. Food Eng. 71: 193-199 (2005)

    Article  Google Scholar 

  • Nishitani E, Sagesaka YM. Simultaneous determination of catechins, caffeine and other phenolic compounds in tea using new HPLC method. J. Food Compos. Anal. 17: 675-685 (2004)

    Article  CAS  Google Scholar 

  • Obanda M, Owuor PO, Mang’oka R. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem. 75: 395-404 (2001)

    Article  CAS  Google Scholar 

  • Olsen KM, Slimestad R, Lea US, Brede C, Løvdal T, Ruoff P, Verheul M, Lillo C. Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant Cell Environ. 32: 286-299 (2009)

    Article  CAS  Google Scholar 

  • Ortiz-López L, Márquez-Valadez B, Gómez-Sánchez A, Silva-Lucero MDC, Torres-Pérez M, Téllez-Ballesteros RI, Ichwan M, Meraz-Ríos MA, Kempermann G, Ramírez-Rodríguez GB. Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 322: 208-220 (2016)

    Article  Google Scholar 

  • Osman AM, Wong, KKY, Fernyhough A. The laccase/ABTS system oxidizes (+)-catechin to oligomeric products. Enzyme Microb. Technol. 40: 1272-1279 (2007)

    Article  CAS  Google Scholar 

  • Otera H, Tada K, Sakurai T, Hashimoto K, Ikeda A. Hypersensitivity pneumonitis associated with inhalation of catechin-rich green tea extracts. Respiration 82: 388-392 (2011)

    Article  Google Scholar 

  • Perva-Uzunalić A, Škerget M, Knez Ž, Weinreich B, Otto F, Grüner S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 96: 597-605 (2006)

    Article  Google Scholar 

  • Sang S, Lee MJ, Hou Z, Ho CT, Yang CS. Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem. 53: 9478-9484 (2005)

    Article  CAS  Google Scholar 

  • Seeram NP, Nair MG. Inhibition of lipid peroxidation and structure − activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J. Agric. Food Chem. 50: 5308-5312 (2002)

    Article  CAS  Google Scholar 

  • Shin S, Bhowmik SR. Thermal kinetics of color changes in pea puree. J. Food Eng. 24: 77-86 (1995)

    Article  Google Scholar 

  • Su YL, Leung LK, Huang Y, Chen ZY. Stability of tea theaflavins and catechins. Food Chem. 83: 189-195 (2003)

    Article  CAS  Google Scholar 

  • Sun W, Miller JM. Tandem mass spectrometry of the B‐type procyanidins in wine and B‐type dehydrodicatechins in an autoxidation mixture of (+)‐catechin and (−)‐epicatechin. J. Mass Spectrom. 38: 438-446 (2003)

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61: 199-223 (2007)

    Article  Google Scholar 

  • Wang H, Helliwell K. Epimerisation of catechins in green tea infusions. Food Chem. 70: 337-344 (2000)

    Article  CAS  Google Scholar 

  • Wang LF, Park SC, Chung JO, Baik JH, Park SK. The compounds contributing to the greenness of green tea. J. Food Sci. 69: 301-305 (2004)

    Article  Google Scholar 

  • Xu JZ, Yeung SYV, Chang Q, Huang Y, Chen ZY. Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br. J. Nutr. 91: 873-881 (2004)

    Article  CAS  Google Scholar 

  • Yoshioka H, Sugiura K, Kawahara R, Fujita T, Making M, Kamiya M, Tsuyumu S. Formation of radicals and chemiluminescence during the autoxidation of tea catechins. Agric. Biol. Chem. 55: 2717-2723 (1991)

    CAS  Google Scholar 

  • Zhu J, Cai R, Tan Y, Wu X, Wen Q, Liu Z, Ouyang S, Yin Z, Yang H. Preventive consumption of green tea modifies the gut microbiota and provides persistent protection from high-fat diet-induced obesity. J. Funct. Food. 64: 103621 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Export Promotion Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (617072-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Jin Heo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M., Kang, J.Y., Park, S.K. et al. Effect of storage temperature on the antioxidant activity and catechins stability of Matcha (Camellia sinensis). Food Sci Biotechnol 29, 1261–1271 (2020). https://doi.org/10.1007/s10068-020-00772-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-020-00772-0

Keywords

Navigation