Skip to main content

Mechanisms of action of coffee bioactive components on lipid metabolism

Abstract

Coffee consumption is associated with reduced risk of metabolic syndrome, obesity and diabetes, which may be related to the effects of coffee and its bioactive components on lipid metabolism. Coffee contains caffeine, a known neuromodulator that acts as an adenosine receptor antagonist, as well as other components, such as chlorogenic acids, trigonelline, cafestol and kahweol. Thus, this review discusses the up-to-date knowledge of mechanisms of action of coffee and its bioactive compounds on lipid metabolism. Although there is evidence that coffee and/or its bioactive compounds regulate transcription factors (e.g. peroxisome proliferator-activated receptors and sterol regulatory element binding proteins) and enzymes (e.g. AMP-activated protein kinase) involved in lipogenesis, lipid uptake, transport, fatty acid β-oxidation and/or lipolysis, needs for the understanding of coffee and its effects on lipid metabolism in humans remain to be answered.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Ameca GM, Cerrilla MEO, Córdoba PZ, Cruz AD, Hernández MS, Haro JH. Chemical composition and antioxidant capacity of coffee pulp. Ciênc. Agrotec. 42: 307-313 (2018)

    Article  Google Scholar 

  • Baek J-H, Kim N-J, Song J-K, Chun K-H. Kahweol inhibits lipid accumulation and induces glucose-uptake through activation of AMP-activated protein kinase (AMPK). BMB Rep. 50: 566-571 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boergesen M, Pedersen TA, Gross B, van Heeringen SJ, Hagenbeek D, Bindesboll C, Caron S, Lalloyer F, Steffensen KR, Nebb HI, Gustafsson J-A, Stunnenberg HG, Staels B, Mandrup S. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol. Cell. Biol. 32: 852-867 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo D, Gomez-Coronado D, Suarez Y, Lasuncion MA, Vega MA. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J. Lipid Res. 39: 777-788 (1998)

    CAS  PubMed  Google Scholar 

  • Caria CRP, Deoliveira CC, Gotardo ÉFM, Desouza VT, Rocha T, Macedo JA, Carvalho P, Ribeiro ML, Gambero A (2014) Caffeinated and decaffeinated instant coffee consumption partially reverses high-fat diet-induced metabolic alterations in mice. Food Res. Int. 61: 120-126

    Article  CAS  Google Scholar 

  • Caron A, Richard D, Laplante M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 35: 321-348 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Carrageta DF, Dias TR, Alves MG, Oliveira PF, Monteiro MP, Silva BM. Anti-obesity potential of natural methylxanthines. J. Funct. Foods 43: 84-94 (2018)

    Article  CAS  Google Scholar 

  • Cha KH, Song D-G, Kim SM, Pan C-H. Inhibition of gastrointestinal lipolysis by green tea, coffee, and gomchui (Ligularia fischeri) tea polyphenols during simulated digestion. J. Agric. Food Chem. 60: 7152-7157 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Cho A-S, Jeon S-M, Kim M-J, Yeo J, Seo K-I, Choi M-S, Lee M-K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 48: 937-943 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Choi B-K, Park S-B, Lee D-R, Lee HJ, Jin Y-Y, Yang SH, Suh J-W. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac. J. Trop. Med. 9: 635-643 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Kim YJ, Yang SJ, Lee Y, Lee M. Nutrigenomic functions of PPARs in obesogenic environments. PPAR Res. 2016: 4794576 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford MN, Jaganath IB, Ludwig IA, Crozier A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 34: 1391-1421 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Cruz RG, Vieira TMFS, Lira SP. Potential antioxidant of brazilian coffee from the region of Cerrado. Food Sci. Technol. 38: 447-453 (2018)

    Article  Google Scholar 

  • de Azevedo ABA, Mazzafera P, Mohamed RS, Demelo SABV, Kieckbusch TG. Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents. Brazilian J. Chem. Eng. 25: 543-552 (2008)

    Article  Google Scholar 

  • Egawa T, Hamada T, Ma X, Karaike K, Kameda N, Masuda S, Iwanaka N, Hayashi T. Caffeine activates preferentially α1-isoform of 5′AMP-activated protein kinase in rat skeletal muscle. Acta Physiol. 201: 227-238 (2011)

    Article  CAS  Google Scholar 

  • Farah A. Coffee constituents, pp. 21-58. In: Coffee: emerging health effects and disease prevention. Chu Y-F (ed). John Wiley & Sons, Ltd., New York, NY, USA. (2012)

    Chapter  Google Scholar 

  • Farias-Pereira R, Oshiro J, Kim K-H, Park Y. Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. J. Funct. Foods 48: 586-593 (2018)

    Article  CAS  Google Scholar 

  • Flanagan J, Bily A, Rolland Y, Roller M. Lipolytic activity of Svetol(R), a decaffeinated green coffee bean extract. Phytother. Res. 28: 946-948 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Godos J, Pluchinotta FR, Marventano S, Buscemi S, Li Volti G, Galvano F, Grosso G. Coffee components and cardiovascular risk: beneficial and detrimental effects. Int. J. Food Sci. Nutr. 65: 925-936 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu. Rev. Nutr. 37: 131-156 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Hamden K, Mnafgui K, Amri Z, Aloulou A, Elfeki A. Inhibition of key digestive enzymes related to diabetes and hyperlipidemia and protection of liver-kidney functions by trigonelline in diabetic rats. Sci. Pharm. 81: 233-246 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Harpaz E, Tamir S, Weinstein A, Weinstein Y. The effect of caffeine on energy balance. J. Basic Clin. Physiol. Pharmacol. 28(1): 1-10 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Liang X, Zhong Y, He W, Wang Z. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. J. Sci. Food Agric. 95: 1903-1910 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Jeon T-I, Esquejo RM, Roqueta-Rivera M, Phelan PE, Moon Y-A, Govindarajan SS, Esau CC, Osborne TF. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab. 18: 51-61 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeszka-Skowron M, Sentkowska A, Pyrzyńska K, De Peña MP. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur. Food Res. Technol. 242: 1403-1409 (2016)

    Article  CAS  Google Scholar 

  • Jia H, Aw W, Egashira K, Takahashi S, Aoyama S, Saito K, Kishimoto Y, Kato H. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice. Genes Nutr. 9: 389 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiyama M, Moon J-K, Jang HW, Shibamoto T. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. J. Agric. Food Chem. 63: 1996-2005 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jang JY, Cai J, Kim Y, Shin K, Choi E-K, Lee S-P, Kim J-C, Kim T-S, Jeong H-S, Kim Y-B. Ethanol extracts of unroasted Coffea canephora robusta beans suppress adipogenesis in preadipocytes and fat accumulation in rats fed a high-fat diet. Food Sci. Biotechnol. 23: 2029-2035 (2014)

    Article  CAS  Google Scholar 

  • Kogure A, Sakane N, Takakura Y, Umekawa T, Yoshioka K, Nishino H, Yamamoto T, Kawada T, Yoshikawa T, Yoshida T. Effects of caffeine on the uncoupling protein family in obese yellow KK mice. Clin. Exp. Pharmacol. Physiol. 29: 391-394 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Lally JS V, Jain SS, Han XX, Snook LA, Glatz JFC, Luiken JJFP, McFarlan J, Holloway GP, Bonen A. Caffeine-stimulated fatty acid oxidation is blunted in CD36 null mice. Acta Physiol. 205: 71-81 (2012)

    Article  CAS  Google Scholar 

  • Lee KJ, Jeong HG. Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol. Lett. 173: 80-87 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Li S-Y, Chang C-Q, Ma F-Y, Yu C-L. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-α in golden hamsters fed on high fat diet. Biomed. Environ. Sci. 22: 122-129 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Lima CS, Spindola DG, Bechara A, Garcia DM, Palmeira-Dos-Santos C, Peixoto-da-Silva J, Erustes AG, Michelin LFG, Pereira GJS, Smaili SS, Paredes-Gamero E, Calgarotto AK, Oliveira CR, Bincoletto C. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed. Pharmacother. 92: 1045-1054 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Liu C-W, Tsai H-C, Huang C-C, Tsai C-Y, Su Y-B, Lin M-W, Lee K-C, Hsieh Y-C, Li T-H, Huang S-F, Yang Y-Y, Hou M-C, Lin H-C, Lee F-Y, Lee S-D. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats. Am. J. Physiol. Metab. 314: E433-E447 (2017)

    Google Scholar 

  • Liu J, Peng Y, Yue Y, Shen P, Park Y. Epigallocatechin-3-gallate reduces fat accumulation in Caenorhabditis elegans. Prev. Nutr. food Sci. 23: 214-219 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Gao M, Liu D. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharm. Res. 32: 1200-1209 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Marechal L, Laviolette M, Rodrigue-Way A, Sow B, Brochu M, Caron V, Tremblay A. The CD36-PPARgamma pathway in metabolic disorders. Int. J. Mol. Sci. 19: E1529 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Saez N, Ullate M, Martin-Cabrejas MA, Martorell P, Genovés S, Ramon D, del Castillo MD. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chem. 150: 227-234 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Massafra V, van Mil SWC. Farnesoid X receptor: a “homeostat” for hepatic nutrient metabolism. Biochim. Biophys. acta. Mol. Basis Dis. 1864: 45-59 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Mathew TS, Ferris RK, Downs RM, Kinsey ST, Baumgarner BL. Caffeine promotes autophagy in skeletal muscle cells by increasing the calcium-dependent activation of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 453: 411-418 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Mellbye FB, Jeppesen PB, Hermansen K, Gregersen S. Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J. Nat. Prod. 78: 2447-2451 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Mellbye FB, Jeppesen PB, Shokouh P, Laustsen C, Hermansen K, Gregersen S. Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J. Nat. Prod. 80: 2353-2359 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Mohamadi N, Sharififar F, Pournamdari M, Ansari M. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. J. Diet. Suppl. 15: 207-222 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Mougios V, Ring S, Petridou A, Nikolaidis MG. Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum. J. Appl. Physiol. 94: 476-484 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6 J mice. Am. J. Physiol. - Endocrinol. Metab. 300: E122-E133 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Funakoshi-Tago M, Tamura H. Coffee reduces KRAS expression in Caco-2 human colon carcinoma cells via regulation of miRNAs. Oncol. Lett. 14: 1109-1114 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita Y, Iwai K, Fukunaga T, Nakagiri O. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil. Biosci. Biotechnol. Biochem. 76: 2329-2331 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Noh SK, Koo SI, Wang S. Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats. J. Nutr. 136: 2791-2796 (2006)

    Article  PubMed  Google Scholar 

  • Oh SH, Hwang YP, Choi JH, Jin SW, Lee GH, Han EH, Chung YH, Chung YC, Jeong HG. Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. Food Chem. Toxicol. 121: 326-335 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Ong KW, Hsu A, Tan BKH. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol. 85: 1341-1351 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Ontawong A, Boonphang O, Pasachan T, Duangjai A, Pongchaidecha A, Phatsara M, Jinakote M, Amornlerdpison D, Srimaroeng C. Hepatoprotective effect of coffee pulp aqueous extract combined with simvastatin against hepatic steatosis in high-fat diet-induced obese rats. J. Funct. Foods 54: 568-577 (2019a)

    Article  CAS  Google Scholar 

  • Ontawong A, Duangjai A, Muanprasat C, Pasachan T, Pongchaidecha A, Amornlerdpison D, Srimaroeng C. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 52: 187-197 (2019b)

    Article  CAS  PubMed  Google Scholar 

  • Palatini P, Benetti E, Mos L, Garavelli G, Mazzer A, Cozzio S, Fania C, Casiglia E. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur. J. Epidemiol. 30: 209-217 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Park I, Ochiai R, Ogata H, Kayaba M, Hari S, Hibi M, Katsuragi Y, Satoh M, Tokuyama K. Effects of subacute ingestion of chlorogenic acids on sleep architecture and energy metabolism through activity of the autonomic nervous system: a randomised, placebo-controlled, double-blinded cross-over trial. Br. J. Nutr. 117: 979-984 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Peng S-G, Pang Y-L, Zhu Q, Kang J-H, Liu M-X, Wang Z. Chlorogenic acid functions as a novel agonist of PPARγ2 during the differentiation of mouse 3T3-L1 preadipocytes. Biomed Res. Int. 2018: 8594767 (2018)

    PubMed  PubMed Central  Google Scholar 

  • Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359: j5024 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Post SM, de Wit EC, Princen HM. Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase in rat hepatocytes. Arterioscler. Thromb. Vasc. Biol. 17: 3064-3070 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Proenca ARG, Sertie RAL, Oliveira AC, Campana AB, Caminhotto RO, Chimin P, Lima FB. New concepts in white adipose tissue physiology. Braz J. Med. Biol. Res. 47: 192-205 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan HY, Kim DY, Chung SH. Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells. BMB Rep. 46: 207-212 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin. Chem. Lab. Med. 52: 1695-1727 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu. Rev. Nutr. 21: 193-230 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Reis CEG, Dórea JG, da Costa THM. Effects of coffee consumption on glucose metabolism: a systematic review of clinical trials. J. Tradit. Complement. Med. 9: 184-191 (2019)

    Article  PubMed  Google Scholar 

  • Reis CEG, Paiva CLRDS, Amato AA, Lofrano-Porto A, Wassell S, Bluck LJC, Dorea JG, da Costa THM. Decaffeinated coffee improves insulin sensitivity in healthy men. Br. J. Nutr. 119: 1029-1038 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Rendon MY, Dos Santos Scholz MB, Bragagnolo N. Physical characteristics of the paper filter and low cafestol content filter coffee brews. Food Res. Int. 108: 280-285 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Ricketts M-L, Boekschoten M V, Kreeft AJ, Hooiveld GJEJ, Moen CJA, Muller M, Frants RR, Kasanmoentalib S, Post SM, Princen HMG, Porter JG, Katan MB, Hofker MH, Moore DD. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol. Endocrinol. 21: 1603-1616 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Riedel A, Lang R, Rohm B, Rubach M, Hofmann T, Somoza V. Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression. J. Nutr. Biochem. 25: 750-757 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Robertson TM, Clifford MN, Penson S, Williams P, Robertson MD. Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms. Br. J. Nutr. 119: 792-800 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Roshan H, Nikpayam O, Sedaghat M, Sohrab G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br. J. Nutr. 119:250-258 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Naveed M, BiBi J, Ali Kamboh A, Phil L, Chao S. Potential nutraceutical and food additive properties and risks of coffee: a comprehensive overview. Crit. Rev. Food Sci. Nutr. (2019). https://doi.org/10.1080/10408398.2018.1489368

    Article  PubMed  Google Scholar 

  • Santos RMM, Lima DRA. Coffee consumption, obesity and type 2 diabetes: a mini-review. Eur. J. Nutr. 55: 1345-1358 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Sarria B, Martinez-Lopez S, Sierra-Cinos JL, Garcia-Diz L, Mateos R, Bravo-Clemente L. Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. Eur. J. Nutr. 57: 269-278 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Schnuck JK, Gould LM, Parry HA, Johnson MA, Gannon NP, Sunderland KL, Vaughan RA. Metabolic effects of physiological levels of caffeine in myotubes. J. Physiol. Biochem. 74: 35-45 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Sharma L, Lone NA, Knott RM, Hassan A, Abdullah T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6 J mice, via restoration of hepatic autophagy. Food Chem. Toxicol. 121: 283-296 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement. Altern. Med. 6: 9 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  • Shokouh P, Jeppesen PB, Hermansen K, Nørskov NP, Laustsen C, Jacques Hamilton-Dutoit S, Qi H, Stødkilde-Jørgensen H, Gregersen S. A combination of coffee compounds shows insulin-sensitizing and hepatoprotective effects in a rat model of diet-induced metabolic syndrome. Nutrients 10: 6 (2018)

    Article  CAS  Google Scholar 

  • Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, Martinez L, Xie S, Bay B-H, Summers SA, Newgard CB, Yen PM. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 59: 1366-1380 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Su S-H, Shyu H-W, Yeh Y-T, Chen K-M, Yeh H, Su S-J. Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells. Toxicol. In Vitro 27: 1830-1837 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Sudeep HV, Venkatakrishna K, Patel D, Shyamprasad K. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver. BMC Complement. Altern. Med. 16: 274 (2016)

    Article  Google Scholar 

  • Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition 38: 1-8 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Urgert R, Essed N, van der Weg G, Kosmeijer-Schuil TG, Katan MB. Separate effects of the coffee diterpenes cafestol and kahweol on serum lipids and liver aminotransferases. Am. J. Clin. Nutr. 65: 519-524 (1997)

    Article  CAS  PubMed  Google Scholar 

  • van Cruchten STJ. Cafestol: a multi-faced compound kinetics and metabolic effects of cafestol in mice. PhD thesis, Wageningen University, Wageningen, NL. (2010)

  • Vandenberghe C, St-Pierre V, Courchesne-Loyer A, Hennebelle M, Castellano C-A, Cunnane SC. Caffeine intake increases plasma ketones: an acute metabolic study in humans. Can. J. Physiol. Pharmacol. 95: 455-458 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Vignoli JA, Viegas MC, Bassoli DG, Benassi MT. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res. Int. 61: 279-285 (2014)

    Article  CAS  Google Scholar 

  • Wang Z, Lam K-L, Hu J, Ge S, Zhou A, Zheng B, Zeng S, Lin S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr. 7: 579-588 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Ong K, Hsu A, Tan BKH, Calbet JA. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 7: e32718 (2012)

    Article  CAS  Google Scholar 

  • Wu L, Meng J, Shen Q, Zhang Y, Pan S, Chen Z, Zhu L-Q, Lu Y, Huang Y, Zhang G. Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat. Commun. 8: 15904 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JS, Qi W, Farias-Pereira R, Choi S, Clark JM, Kim D, Park Y. Permethrin and ivermectin modulate lipid metabolism in steatosis-induced HepG2 hepatocyte. Food Chem. Toxicol. 125: 595-604 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari O, Sato H, Igarashi K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci. Biotechnol. Biochem. 73: 1033-1041 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Yue Y, Shen P, Xu Y, Park Y. p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. J. Sci. Food Agric. 99: 1190-1197 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Zhang S-J, Li Y-F, Wang G-E, Tan R-R, Tsoi B, Mao G-W, Zhai Y-J, Cao L-F, Chen M, Kurihara H, Wang Q, He R-R. Caffeine ameliorates high energy diet-induced hepatic steatosis: sirtuin 3 acts as a bridge in the lipid metabolism pathway. Food Funct. 6: 2578-2587 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Qiu Y, Zhang Q-F, Li D. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br. J. Nutr. 112: 1034-1040 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Dai W, Chen X, Wang K, Zhang W, Liu L, Hou J. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J. Biomed. Sci. 22: 105 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Brazilian National Counsel of Technological and Scientific Development [CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico]. The authors thank Mr. Joshua Barsczewski for his assistance editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonhwa Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farias-Pereira, R., Park, CS. & Park, Y. Mechanisms of action of coffee bioactive components on lipid metabolism. Food Sci Biotechnol 28, 1287–1296 (2019). https://doi.org/10.1007/s10068-019-00662-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00662-0

Keywords

  • Alkaloid
  • Phenolic acid
  • Cholesterol
  • Obesity
  • Fat