Ameca GM, Cerrilla MEO, Córdoba PZ, Cruz AD, Hernández MS, Haro JH. Chemical composition and antioxidant capacity of coffee pulp. Ciênc. Agrotec. 42: 307-313 (2018)
Article
Google Scholar
Baek J-H, Kim N-J, Song J-K, Chun K-H. Kahweol inhibits lipid accumulation and induces glucose-uptake through activation of AMP-activated protein kinase (AMPK). BMB Rep. 50: 566-571 (2017)
Article
CAS
PubMed
PubMed Central
Google Scholar
Boergesen M, Pedersen TA, Gross B, van Heeringen SJ, Hagenbeek D, Bindesboll C, Caron S, Lalloyer F, Steffensen KR, Nebb HI, Gustafsson J-A, Stunnenberg HG, Staels B, Mandrup S. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol. Cell. Biol. 32: 852-867 (2012)
Article
CAS
PubMed
PubMed Central
Google Scholar
Calvo D, Gomez-Coronado D, Suarez Y, Lasuncion MA, Vega MA. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J. Lipid Res. 39: 777-788 (1998)
CAS
PubMed
Google Scholar
Caria CRP, Deoliveira CC, Gotardo ÉFM, Desouza VT, Rocha T, Macedo JA, Carvalho P, Ribeiro ML, Gambero A (2014) Caffeinated and decaffeinated instant coffee consumption partially reverses high-fat diet-induced metabolic alterations in mice. Food Res. Int. 61: 120-126
Article
CAS
Google Scholar
Caron A, Richard D, Laplante M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 35: 321-348 (2015)
Article
CAS
PubMed
Google Scholar
Carrageta DF, Dias TR, Alves MG, Oliveira PF, Monteiro MP, Silva BM. Anti-obesity potential of natural methylxanthines. J. Funct. Foods 43: 84-94 (2018)
Article
CAS
Google Scholar
Cha KH, Song D-G, Kim SM, Pan C-H. Inhibition of gastrointestinal lipolysis by green tea, coffee, and gomchui (Ligularia fischeri) tea polyphenols during simulated digestion. J. Agric. Food Chem. 60: 7152-7157 (2012)
Article
CAS
PubMed
Google Scholar
Cho A-S, Jeon S-M, Kim M-J, Yeo J, Seo K-I, Choi M-S, Lee M-K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 48: 937-943 (2010)
Article
CAS
PubMed
Google Scholar
Choi B-K, Park S-B, Lee D-R, Lee HJ, Jin Y-Y, Yang SH, Suh J-W. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac. J. Trop. Med. 9: 635-643 (2016)
Article
CAS
PubMed
Google Scholar
Chung S, Kim YJ, Yang SJ, Lee Y, Lee M. Nutrigenomic functions of PPARs in obesogenic environments. PPAR Res. 2016: 4794576 (2016)
Article
CAS
PubMed
PubMed Central
Google Scholar
Clifford MN, Jaganath IB, Ludwig IA, Crozier A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 34: 1391-1421 (2017)
Article
CAS
PubMed
Google Scholar
Cruz RG, Vieira TMFS, Lira SP. Potential antioxidant of brazilian coffee from the region of Cerrado. Food Sci. Technol. 38: 447-453 (2018)
Article
Google Scholar
de Azevedo ABA, Mazzafera P, Mohamed RS, Demelo SABV, Kieckbusch TG. Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents. Brazilian J. Chem. Eng. 25: 543-552 (2008)
Article
Google Scholar
Egawa T, Hamada T, Ma X, Karaike K, Kameda N, Masuda S, Iwanaka N, Hayashi T. Caffeine activates preferentially α1-isoform of 5′AMP-activated protein kinase in rat skeletal muscle. Acta Physiol. 201: 227-238 (2011)
Article
CAS
Google Scholar
Farah A. Coffee constituents, pp. 21-58. In: Coffee: emerging health effects and disease prevention. Chu Y-F (ed). John Wiley & Sons, Ltd., New York, NY, USA. (2012)
Chapter
Google Scholar
Farias-Pereira R, Oshiro J, Kim K-H, Park Y. Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. J. Funct. Foods 48: 586-593 (2018)
Article
CAS
Google Scholar
Flanagan J, Bily A, Rolland Y, Roller M. Lipolytic activity of Svetol(R), a decaffeinated green coffee bean extract. Phytother. Res. 28: 946-948 (2014)
Article
CAS
PubMed
Google Scholar
Godos J, Pluchinotta FR, Marventano S, Buscemi S, Li Volti G, Galvano F, Grosso G. Coffee components and cardiovascular risk: beneficial and detrimental effects. Int. J. Food Sci. Nutr. 65: 925-936 (2014)
Article
CAS
PubMed
Google Scholar
Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu. Rev. Nutr. 37: 131-156 (2017)
Article
CAS
PubMed
Google Scholar
Hamden K, Mnafgui K, Amri Z, Aloulou A, Elfeki A. Inhibition of key digestive enzymes related to diabetes and hyperlipidemia and protection of liver-kidney functions by trigonelline in diabetic rats. Sci. Pharm. 81: 233-246 (2013)
Article
CAS
PubMed
Google Scholar
Harpaz E, Tamir S, Weinstein A, Weinstein Y. The effect of caffeine on energy balance. J. Basic Clin. Physiol. Pharmacol. 28(1): 1-10 (2017)
Article
CAS
PubMed
Google Scholar
Huang K, Liang X, Zhong Y, He W, Wang Z. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. J. Sci. Food Agric. 95: 1903-1910 (2015)
Article
CAS
PubMed
Google Scholar
Jeon T-I, Esquejo RM, Roqueta-Rivera M, Phelan PE, Moon Y-A, Govindarajan SS, Esau CC, Osborne TF. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab. 18: 51-61 (2013)
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeszka-Skowron M, Sentkowska A, Pyrzyńska K, De Peña MP. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur. Food Res. Technol. 242: 1403-1409 (2016)
Article
CAS
Google Scholar
Jia H, Aw W, Egashira K, Takahashi S, Aoyama S, Saito K, Kishimoto Y, Kato H. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice. Genes Nutr. 9: 389 (2014)
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamiyama M, Moon J-K, Jang HW, Shibamoto T. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. J. Agric. Food Chem. 63: 1996-2005 (2015)
Article
CAS
PubMed
Google Scholar
Kim J, Jang JY, Cai J, Kim Y, Shin K, Choi E-K, Lee S-P, Kim J-C, Kim T-S, Jeong H-S, Kim Y-B. Ethanol extracts of unroasted Coffea canephora robusta beans suppress adipogenesis in preadipocytes and fat accumulation in rats fed a high-fat diet. Food Sci. Biotechnol. 23: 2029-2035 (2014)
Article
CAS
Google Scholar
Kogure A, Sakane N, Takakura Y, Umekawa T, Yoshioka K, Nishino H, Yamamoto T, Kawada T, Yoshikawa T, Yoshida T. Effects of caffeine on the uncoupling protein family in obese yellow KK mice. Clin. Exp. Pharmacol. Physiol. 29: 391-394 (2002)
Article
CAS
PubMed
Google Scholar
Lally JS V, Jain SS, Han XX, Snook LA, Glatz JFC, Luiken JJFP, McFarlan J, Holloway GP, Bonen A. Caffeine-stimulated fatty acid oxidation is blunted in CD36 null mice. Acta Physiol. 205: 71-81 (2012)
Article
CAS
Google Scholar
Lee KJ, Jeong HG. Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol. Lett. 173: 80-87 (2007)
Article
CAS
PubMed
Google Scholar
Li S-Y, Chang C-Q, Ma F-Y, Yu C-L. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-α in golden hamsters fed on high fat diet. Biomed. Environ. Sci. 22: 122-129 (2009)
Article
CAS
PubMed
Google Scholar
Lima CS, Spindola DG, Bechara A, Garcia DM, Palmeira-Dos-Santos C, Peixoto-da-Silva J, Erustes AG, Michelin LFG, Pereira GJS, Smaili SS, Paredes-Gamero E, Calgarotto AK, Oliveira CR, Bincoletto C. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed. Pharmacother. 92: 1045-1054 (2017)
Article
CAS
PubMed
Google Scholar
Liu C-W, Tsai H-C, Huang C-C, Tsai C-Y, Su Y-B, Lin M-W, Lee K-C, Hsieh Y-C, Li T-H, Huang S-F, Yang Y-Y, Hou M-C, Lin H-C, Lee F-Y, Lee S-D. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats. Am. J. Physiol. Metab. 314: E433-E447 (2017)
Google Scholar
Liu J, Peng Y, Yue Y, Shen P, Park Y. Epigallocatechin-3-gallate reduces fat accumulation in Caenorhabditis elegans. Prev. Nutr. food Sci. 23: 214-219 (2018)
Article
PubMed
PubMed Central
Google Scholar
Ma Y, Gao M, Liu D. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharm. Res. 32: 1200-1209 (2015)
Article
CAS
PubMed
Google Scholar
Marechal L, Laviolette M, Rodrigue-Way A, Sow B, Brochu M, Caron V, Tremblay A. The CD36-PPARgamma pathway in metabolic disorders. Int. J. Mol. Sci. 19: E1529 (2018)
Article
CAS
PubMed
Google Scholar
Martinez-Saez N, Ullate M, Martin-Cabrejas MA, Martorell P, Genovés S, Ramon D, del Castillo MD. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chem. 150: 227-234 (2014)
Article
CAS
PubMed
Google Scholar
Massafra V, van Mil SWC. Farnesoid X receptor: a “homeostat” for hepatic nutrient metabolism. Biochim. Biophys. acta. Mol. Basis Dis. 1864: 45-59 (2018)
Article
CAS
PubMed
Google Scholar
Mathew TS, Ferris RK, Downs RM, Kinsey ST, Baumgarner BL. Caffeine promotes autophagy in skeletal muscle cells by increasing the calcium-dependent activation of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 453: 411-418 (2014)
Article
CAS
PubMed
Google Scholar
Mellbye FB, Jeppesen PB, Hermansen K, Gregersen S. Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J. Nat. Prod. 78: 2447-2451 (2015)
Article
CAS
PubMed
Google Scholar
Mellbye FB, Jeppesen PB, Shokouh P, Laustsen C, Hermansen K, Gregersen S. Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J. Nat. Prod. 80: 2353-2359 (2017)
Article
CAS
PubMed
Google Scholar
Mohamadi N, Sharififar F, Pournamdari M, Ansari M. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. J. Diet. Suppl. 15: 207-222 (2018)
Article
CAS
PubMed
Google Scholar
Mougios V, Ring S, Petridou A, Nikolaidis MG. Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum. J. Appl. Physiol. 94: 476-484 (2003)
Article
CAS
PubMed
Google Scholar
Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6 J mice. Am. J. Physiol. - Endocrinol. Metab. 300: E122-E133 (2010)
Article
CAS
PubMed
Google Scholar
Nakayama T, Funakoshi-Tago M, Tamura H. Coffee reduces KRAS expression in Caco-2 human colon carcinoma cells via regulation of miRNAs. Oncol. Lett. 14: 1109-1114 (2017)
Article
CAS
PubMed
PubMed Central
Google Scholar
Narita Y, Iwai K, Fukunaga T, Nakagiri O. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil. Biosci. Biotechnol. Biochem. 76: 2329-2331 (2012)
Article
CAS
PubMed
Google Scholar
Noh SK, Koo SI, Wang S. Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats. J. Nutr. 136: 2791-2796 (2006)
Article
PubMed
Google Scholar
Oh SH, Hwang YP, Choi JH, Jin SW, Lee GH, Han EH, Chung YH, Chung YC, Jeong HG. Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. Food Chem. Toxicol. 121: 326-335 (2018)
Article
CAS
PubMed
Google Scholar
Ong KW, Hsu A, Tan BKH. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol. 85: 1341-1351 (2013)
Article
CAS
PubMed
Google Scholar
Ontawong A, Boonphang O, Pasachan T, Duangjai A, Pongchaidecha A, Phatsara M, Jinakote M, Amornlerdpison D, Srimaroeng C. Hepatoprotective effect of coffee pulp aqueous extract combined with simvastatin against hepatic steatosis in high-fat diet-induced obese rats. J. Funct. Foods 54: 568-577 (2019a)
Article
CAS
Google Scholar
Ontawong A, Duangjai A, Muanprasat C, Pasachan T, Pongchaidecha A, Amornlerdpison D, Srimaroeng C. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 52: 187-197 (2019b)
Article
CAS
PubMed
Google Scholar
Palatini P, Benetti E, Mos L, Garavelli G, Mazzer A, Cozzio S, Fania C, Casiglia E. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur. J. Epidemiol. 30: 209-217 (2015)
Article
CAS
PubMed
Google Scholar
Park I, Ochiai R, Ogata H, Kayaba M, Hari S, Hibi M, Katsuragi Y, Satoh M, Tokuyama K. Effects of subacute ingestion of chlorogenic acids on sleep architecture and energy metabolism through activity of the autonomic nervous system: a randomised, placebo-controlled, double-blinded cross-over trial. Br. J. Nutr. 117: 979-984 (2017)
Article
CAS
PubMed
Google Scholar
Peng S-G, Pang Y-L, Zhu Q, Kang J-H, Liu M-X, Wang Z. Chlorogenic acid functions as a novel agonist of PPARγ2 during the differentiation of mouse 3T3-L1 preadipocytes. Biomed Res. Int. 2018: 8594767 (2018)
PubMed
PubMed Central
Google Scholar
Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359: j5024 (2017)
Article
PubMed
PubMed Central
Google Scholar
Post SM, de Wit EC, Princen HM. Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase in rat hepatocytes. Arterioscler. Thromb. Vasc. Biol. 17: 3064-3070 (1997)
Article
CAS
PubMed
Google Scholar
Proenca ARG, Sertie RAL, Oliveira AC, Campana AB, Caminhotto RO, Chimin P, Lima FB. New concepts in white adipose tissue physiology. Braz J. Med. Biol. Res. 47: 192-205 (2014)
Article
CAS
PubMed
PubMed Central
Google Scholar
Quan HY, Kim DY, Chung SH. Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells. BMB Rep. 46: 207-212 (2013)
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin. Chem. Lab. Med. 52: 1695-1727 (2014)
Article
CAS
PubMed
Google Scholar
Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu. Rev. Nutr. 21: 193-230 (2001)
Article
CAS
PubMed
Google Scholar
Reis CEG, Dórea JG, da Costa THM. Effects of coffee consumption on glucose metabolism: a systematic review of clinical trials. J. Tradit. Complement. Med. 9: 184-191 (2019)
Article
PubMed
Google Scholar
Reis CEG, Paiva CLRDS, Amato AA, Lofrano-Porto A, Wassell S, Bluck LJC, Dorea JG, da Costa THM. Decaffeinated coffee improves insulin sensitivity in healthy men. Br. J. Nutr. 119: 1029-1038 (2018)
Article
CAS
PubMed
Google Scholar
Rendon MY, Dos Santos Scholz MB, Bragagnolo N. Physical characteristics of the paper filter and low cafestol content filter coffee brews. Food Res. Int. 108: 280-285 (2018)
Article
CAS
PubMed
Google Scholar
Ricketts M-L, Boekschoten M V, Kreeft AJ, Hooiveld GJEJ, Moen CJA, Muller M, Frants RR, Kasanmoentalib S, Post SM, Princen HMG, Porter JG, Katan MB, Hofker MH, Moore DD. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol. Endocrinol. 21: 1603-1616 (2007)
Article
CAS
PubMed
Google Scholar
Riedel A, Lang R, Rohm B, Rubach M, Hofmann T, Somoza V. Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression. J. Nutr. Biochem. 25: 750-757 (2014)
Article
CAS
PubMed
Google Scholar
Robertson TM, Clifford MN, Penson S, Williams P, Robertson MD. Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms. Br. J. Nutr. 119: 792-800 (2018)
Article
CAS
PubMed
Google Scholar
Roshan H, Nikpayam O, Sedaghat M, Sohrab G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br. J. Nutr. 119:250-258 (2018)
Article
CAS
PubMed
Google Scholar
Saeed M, Naveed M, BiBi J, Ali Kamboh A, Phil L, Chao S. Potential nutraceutical and food additive properties and risks of coffee: a comprehensive overview. Crit. Rev. Food Sci. Nutr. (2019). https://doi.org/10.1080/10408398.2018.1489368
Article
PubMed
Google Scholar
Santos RMM, Lima DRA. Coffee consumption, obesity and type 2 diabetes: a mini-review. Eur. J. Nutr. 55: 1345-1358 (2016)
Article
CAS
PubMed
Google Scholar
Sarria B, Martinez-Lopez S, Sierra-Cinos JL, Garcia-Diz L, Mateos R, Bravo-Clemente L. Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. Eur. J. Nutr. 57: 269-278 (2018)
Article
CAS
PubMed
Google Scholar
Schnuck JK, Gould LM, Parry HA, Johnson MA, Gannon NP, Sunderland KL, Vaughan RA. Metabolic effects of physiological levels of caffeine in myotubes. J. Physiol. Biochem. 74: 35-45 (2018)
Article
CAS
PubMed
Google Scholar
Sharma L, Lone NA, Knott RM, Hassan A, Abdullah T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6 J mice, via restoration of hepatic autophagy. Food Chem. Toxicol. 121: 283-296 (2018)
Article
CAS
PubMed
Google Scholar
Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement. Altern. Med. 6: 9 (2006)
Article
PubMed
PubMed Central
Google Scholar
Shokouh P, Jeppesen PB, Hermansen K, Nørskov NP, Laustsen C, Jacques Hamilton-Dutoit S, Qi H, Stødkilde-Jørgensen H, Gregersen S. A combination of coffee compounds shows insulin-sensitizing and hepatoprotective effects in a rat model of diet-induced metabolic syndrome. Nutrients 10: 6 (2018)
Article
CAS
Google Scholar
Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, Martinez L, Xie S, Bay B-H, Summers SA, Newgard CB, Yen PM. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 59: 1366-1380 (2014)
Article
CAS
PubMed
Google Scholar
Su S-H, Shyu H-W, Yeh Y-T, Chen K-M, Yeh H, Su S-J. Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells. Toxicol. In Vitro 27: 1830-1837 (2013)
Article
CAS
PubMed
Google Scholar
Sudeep HV, Venkatakrishna K, Patel D, Shyamprasad K. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver. BMC Complement. Altern. Med. 16: 274 (2016)
Article
Google Scholar
Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition 38: 1-8 (2017)
Article
CAS
PubMed
Google Scholar
Urgert R, Essed N, van der Weg G, Kosmeijer-Schuil TG, Katan MB. Separate effects of the coffee diterpenes cafestol and kahweol on serum lipids and liver aminotransferases. Am. J. Clin. Nutr. 65: 519-524 (1997)
Article
CAS
PubMed
Google Scholar
van Cruchten STJ. Cafestol: a multi-faced compound kinetics and metabolic effects of cafestol in mice. PhD thesis, Wageningen University, Wageningen, NL. (2010)
Vandenberghe C, St-Pierre V, Courchesne-Loyer A, Hennebelle M, Castellano C-A, Cunnane SC. Caffeine intake increases plasma ketones: an acute metabolic study in humans. Can. J. Physiol. Pharmacol. 95: 455-458 (2016)
Article
CAS
PubMed
Google Scholar
Vignoli JA, Viegas MC, Bassoli DG, Benassi MT. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res. Int. 61: 279-285 (2014)
Article
CAS
Google Scholar
Wang Z, Lam K-L, Hu J, Ge S, Zhou A, Zheng B, Zeng S, Lin S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr. 7: 579-588 (2019)
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Ong K, Hsu A, Tan BKH, Calbet JA. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 7: e32718 (2012)
Article
CAS
Google Scholar
Wu L, Meng J, Shen Q, Zhang Y, Pan S, Chen Z, Zhu L-Q, Lu Y, Huang Y, Zhang G. Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat. Commun. 8: 15904 (2017)
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang JS, Qi W, Farias-Pereira R, Choi S, Clark JM, Kim D, Park Y. Permethrin and ivermectin modulate lipid metabolism in steatosis-induced HepG2 hepatocyte. Food Chem. Toxicol. 125: 595-604 (2019)
Article
CAS
PubMed
Google Scholar
Yoshinari O, Sato H, Igarashi K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci. Biotechnol. Biochem. 73: 1033-1041 (2009)
Article
CAS
PubMed
Google Scholar
Yue Y, Shen P, Xu Y, Park Y. p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. J. Sci. Food Agric. 99: 1190-1197 (2019)
Article
CAS
PubMed
Google Scholar
Zhang S-J, Li Y-F, Wang G-E, Tan R-R, Tsoi B, Mao G-W, Zhai Y-J, Cao L-F, Chen M, Kurihara H, Wang Q, He R-R. Caffeine ameliorates high energy diet-induced hepatic steatosis: sirtuin 3 acts as a bridge in the lipid metabolism pathway. Food Funct. 6: 2578-2587 (2015)
Article
CAS
PubMed
Google Scholar
Zheng G, Qiu Y, Zhang Q-F, Li D. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br. J. Nutr. 112: 1034-1040 (2014)
Article
CAS
PubMed
Google Scholar
Zheng X, Dai W, Chen X, Wang K, Zhang W, Liu L, Hou J. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J. Biomed. Sci. 22: 105 (2015)
Article
CAS
PubMed
PubMed Central
Google Scholar