Antioxidant and antibacterial activity of Trametes polyzona (Pers.) Justo

  • Erute M. Adongbede
  • Yogini S. Jaiswal
  • Shurrita S. Davis
  • Priscilla D. Randolph
  • Li-Ni Huo
  • Leonard L. WilliamsEmail author


Polypores are cosmopolitan mushrooms, widely investigated for their beneficial properties in combatting multidrug resistant pathogens. The present study focuses on the need for new, naturally sourced antimicrobial and antioxidant compounds from mushrooms. The antioxidant and antibacterial activity of the phenolic extract of strains of Trametes polyzona (Pers.) Justo, were investigated. Strains of T. polyzona were analyzed for total phenolic content, Trolox antioxidant equivalent, DPPH radical scavenging and antibacterial activities. The amplification of the ribosomal DNA-ITS fragments from DNA of selected mushrooms was carried out using ITS1 and ITS4 primers. The antibacterial activity of phenolic extracts of T. polyzona was comparable to the antibiotics, ceftazidime and erythromycin. T. polyzona extracts inhibited the growth of the different strains of K. pneumoniae, E. coli, S. aureus, and S. enterica tested in this study. The results of the study demonstrate that, T. polyzona can be a potential source of antimicrobial and antioxidant compounds.


Nutraceuticals Oxidative damage Polypore Polyphenols Reactive oxygen species 


Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

10068_2019_642_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)


  1. Adedokun OM, Kyalo M, Gnonlonfin B, Wainaina J, Githae D, Skilton R, Harvey J.. Mushroom: Molecular characterization of indigenous species in the niger delta region of Nigeria. Eur. J. Hortic. Sci. 81: 273–280 (2016)CrossRefGoogle Scholar
  2. Al-Fatimi M, Schröder G, Kreisel H, Lindequist U. Biological activities of selected basidiomycetes from Yemen. Pharmazie. 68: 221–226 (2013)PubMedGoogle Scholar
  3. Barros L, Calhelha RC, Vaz JA, Ferreira IC, Baptista P, Estevinho LM. Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. Eur. Food Res. Technol. 225: 151–156 (2007)CrossRefGoogle Scholar
  4. Côté J, Caillet S, Doyon G, Sylvain JF, Lacroix M. Bioactive compounds in cranberries and their biological properties. Crit. Rev. Food Sci. Nutr. 50: 666–679 (2010)CrossRefPubMedGoogle Scholar
  5. Ferreira IC, Baptista P, Vilas-Boas M, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100: 1511–1516 (2007).CrossRefGoogle Scholar
  6. Finley RL, Collignon P, Larsson DG, Mcewen SA, Li XZ, Gaze WH, Topp E. The scourge of antibiotic resistance: The important role of the environment. Clin. Infect. Dis. 57: 704–710 (2013)CrossRefPubMedGoogle Scholar
  7. Gąsecka M, Siwulski M, Mleczek M. Evaluation of bioactive compounds content and antioxidant properties of soil-growing and wood-growing edible mushrooms. J. Food Process. Preserv. 42: e13386 (2018)CrossRefGoogle Scholar
  8. Glenn A, Bodri MS. Fungal endophyte diversity in Sarracenia. PLoS One 7: e32980 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  9. Grienke U, Zöll M, Peintner U, Rollinger JM. European medicinal polypores - A modern view on traditional uses. J. Ethnopharmacol. 154: 564–583 (2014)CrossRefPubMedGoogle Scholar
  10. Jayakumar T, Thomas PA, Geraldine P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov. Food Sci. Emerg. Technol. 10: 228–234 (2009)CrossRefGoogle Scholar
  11. Justo A, Hibbett DS. Phylogenetic classification of trametes (basidiomycota, polyporales) based on a five-marker dataset. Taxon. 60: 1567–1583 (2011)CrossRefGoogle Scholar
  12. Knežević A, Živković L, Stajić M, Vukojević J, Milovanović I, Spremo-Potparević B. Antigenotoxic Effect of Trametes spp. Extracts against DNA Damage on Human Peripheral White Blood Cells. Sci. World J. 2015: 146378 (2015)Google Scholar
  13. Kosanić M, Ranković B, Dašić M. Mushrooms as possible antioxidant and antimicrobial agents. Iran J. Pharm. Res. 11: 1095–1102 (2012)PubMedPubMedCentralGoogle Scholar
  14. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Van Griensven L. Antioxidants of edible mushrooms. Molecules. 20: 19489–19525 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  15. MacIntyre CR, Bui CM. Pandemics, public health emergencies and antimicrobial resistance - putting the threat in an epidemiologic and risk analysis context. Arch. Public Health. 75: 54 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  16. Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 5:28 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  17. Oyetayo OV, Nieto-Camacho A, Ramirez-Apana TM, Baldomero RE, Jimenez M. Total phenol, antioxidant and cytotoxic properties of wild macrofungi collected from akure southwest Nigeria. Jordan J. Biol. Sci. 6: 105–110 (2013)CrossRefGoogle Scholar
  18. Oyetayo VO, Ogidi CO. Phytochemical screening and antibacterial properties of a wild macrofungus, coriolopsis polyzona against microbial isolates from wastewater and leftover foods. Asian J. Pharm. Biol. Res. 1:486–492 (2011)Google Scholar
  19. Oyetayo VO, Nieto-Camacho A, Rodriguez BE, Jimenez M. Assessment of anti-inflammatory, lipid peroxidation and acute toxicity of extracts obtained from wild higher basidiomycetes mushrooms collected from akure (southwest nigeria). Int. J. Med. Mushrooms 14: 575–580 (2012)CrossRefPubMedGoogle Scholar
  20. Pattar M, Ramesh Ch. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Phcog. Res. 2: 107–1012 (2010)CrossRefPubMedGoogle Scholar
  21. Pérez-Jiménez J, Díaz-Rubio ME, MesíasM, Morales, FJ, Saura-Calixto F. Evidence for the formation of maillardized insoluble dietary fiber in bread: A specific kind of dietary fiber in thermally processed food. Food Res. Inter. 55: 391–396 (2014)Google Scholar
  22. Pop RM, Puia IC, Puia A, Chedea VS, Leopold N, Bocsan IC, Buzoianu AD. Characterization of Trametes versicolor: Medicinal mushroom with important health benefits. Not. Bot. Horti. Agrobo. Cluj-Napoca. 46: 343–349 (2018)CrossRefGoogle Scholar
  23. Sánchez C. Reactive oxygen species and antioxidant properties from mushrooms. Synth. Systems Biotech. 2: 13–22 (2017)CrossRefGoogle Scholar
  24. Schinor EC, Salvador MJ, Ito IY, Dias DA. Evaluation of the antimicrobial activity of crude extracts and isolated constituents from Chresta scapigera. Brazilian J. Microbio. 38: 145–149 (2007)CrossRefGoogle Scholar
  25. Tenore GC, Ciampaglia R, Arnold NA, Piozzi F, Napolitano F, Rigano D, Senatore F. Antimicrobial and antioxidant properties of the essential oil of Salvia lanigera from Cyprus. Food Chem. Toxicol. 49: 238–243 (2011)CrossRefPubMedGoogle Scholar
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins, DG. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  27. Vieira V, Marques A, Barros L, Barreira JC, Ferreira IC. Insights in the antioxidant synergistic effects of combined edible mushrooms: Phenolic and polysaccharidic extracts of boletus edulis and Marasmius oreades. J. Food Nutri. Res. 51: 109–112 (2012)Google Scholar
  28. Wang L, Chen J, Xie H, Ju X, Liu RH. Phytochemical profiles and antioxidant activity of adlay varieties. J. Agric. Food Chem. 61: 5103–5113 (2013)CrossRefPubMedGoogle Scholar
  29. Wasser SP. Review of medicinal mushrooms advances: good news from old allies. Herbal Gram. 56: 28–33 (2002).Google Scholar
  30. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols pp. 315–322 (1990)Google Scholar
  31. Xiao H, Kim WS, Meng B. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virol. J. 12: 171 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yildirim NC, Turkoglu S, Yildirim N, Ince OK. Antioxidant properties of wild edible mushroom Pleurotus eryngii collected from Tunceli province of Turkey. Dig. J. Nanomater Bios. 7: 1647–1654 (2012)Google Scholar
  33. Yuan K, Liao H, Dong W, Shi X, Liu H. Analysis and comparison of the active components and antioxidant activities of extracts from Abelmoschus esculentus L. Pharmacogn. Mag. 8: 156 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhang Z, Schwartz S, Wagner L, Miller W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 7: 203–214 (2000)CrossRefPubMedGoogle Scholar
  35. Ziv D, Zviran T, Zezak O, Samach A, Irihimovitch V. Expression profiling of flowering locus T-like gene in alternate bearing “Hass” avocado trees suggests a role for PaFT in avocado flower induction. PLoS One. 9: e110613 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zjawiony JK. Biologically Active Compounds from Aphyllophorales (Polypore) Fungi. J. Nat. Prod. 67: 300–310 (2004)CrossRefPubMedGoogle Scholar
  37. Zmitrovich IV, Ezhov ON, Wasser SP. A Survey of Species of Genus Trametes Fr. (Higher Basidiomycetes) with Estimation of Their Medicinal Source Potential. Int. J. Med. Mushrooms 14: 307 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  • Erute M. Adongbede
    • 1
  • Yogini S. Jaiswal
    • 2
  • Shurrita S. Davis
    • 2
  • Priscilla D. Randolph
    • 2
  • Li-Ni Huo
    • 3
  • Leonard L. Williams
    • 2
    Email author
  1. 1.Department of BotanyUniversity of LagosLagosNigeria
  2. 2.Center for Excellence in Post Harvest TechnologiesNorth Carolina Agricultural and Technical State UniversityKannapolisUSA
  3. 3.College of PharmacyGuangxi University of Chinese MedicineNanningChina

Personalised recommendations