Skip to main content
Log in

Proteomic response of Saccharomyces boulardii to simulated gastrointestinal conditions and encapsulation

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Probiotics are live microorganisms conferring health benefits when administered in adequate amounts. However, the passage through the gastrointestinal tract represents a challenge due to pH variations, proteases, and bile salts. This study aimed to evaluate the proteomic response of Saccharomyces boulardii to simulated gastrointestinal digestion and the influence of encapsulation on yeast viability. Different pH values and time periods simulating the passage through different sections of the gastrointestinal tract were applied to unencapsulated and encapsulated yeasts. Encapsulation in 0.5% calcium alginate did not improve yeast survival or induce changes in protein patterns whereas protein extracts from control and digested yeasts showed remarkable differences when separated by SDS-PAGE. Protein bands were analyzed by tandem mass spectrometry. Protein identification revealed unique proteins that changed acutely in abundance after simulated digestion. Carbohydrate metabolism, protein processing, and oxide-reduction were the biological processes most affected by simulated gastrointestinal digestion in S. boulardii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anal A, Singh H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 18: 240–251 (2007)

    Article  CAS  Google Scholar 

  • Basu S, Banerjee D, Chowdhury R, Bhattacharya P. Controlled release of microencapsulated probiotics in food matrix. J. Food Eng. 238: 61–69 (2018)

    Article  CAS  Google Scholar 

  • Bruckmann A, Hensbergen PJ, Balog CI, Deelder AM, Brandt R, Snoek II, van Heusden GPH. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. J. Proteomics 71: 662–669 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Bustos A, Font G, Raya R, Martinho A, Fadda S, Taranto M. Proteomic analysis of the probiotic Lactobacillus reuteri CRL1098 reveals novel tolerance biomarkers to bile acid-induced stress. Food Res. Int. 77: 599–607 (2015)

    Article  CAS  Google Scholar 

  • Chen M, Tang H, Chiang M. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol. 66: 20–27 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Corona-Hernández R, Álvarez-Parrilla E, Lizardi-Mendoza J, Islas-Rubio A, Rosa L, Wall-Medrano A. Structural stability and viability of microencapsulated probiotic bacteria: a review. Compr. Rev. Food Sci. Food Saf. 12: 614–628 (2013)

    Article  CAS  Google Scholar 

  • Faurobert M, Pelpoir E, Chaïb J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Vol. 335, pp. 9–14. In: Methods in Molecular Biology, Plant Proteomics: Methods and Protocols. Thiellement H, Zivy M, Damerval C, Méchin V (eds). Humana Press Inc., Totowa, NJ, USA (2007)

    Google Scholar 

  • Fietto J, Araújo R, Valadão F, Fietto L, Brandão R, Neves M, Gomes F, Nicolo J, Castro I. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can. J. Microbiol. 50: 615–621 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Gbassi G, Vandamme T, Yolou F, Marchioni E. In vitro effects of pH, bile salts and enzymes on the release and viability of encapsulated Lactobacillus plantarum strains in a gastrointestinal tract model. Int. Dairy J. 21: 97–102 (2011)

    Article  CAS  Google Scholar 

  • Ghorbani-Choboghlo H, Zahraei-Salehi T, Ashrafi-Helan J, Yahyaraeyat R, Pourjafar H, Nikaein D, Balal A, Khosravi AR. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions. Iran. J. Microbiol. 7: 338–342 (2015)

    PubMed  PubMed Central  Google Scholar 

  • Giménez R, Aguilera L, Ferreira E, Aguilar J, Baldomà L, Badia J. Glyceraldehyde-3-phosphate dehydrogenase as a moonlighting protein in bacteria. Recent Adv. Pharm. Sci. 4: 165–180 (2014)

    Google Scholar 

  • Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19: 35–45 (2002)

    Article  CAS  Google Scholar 

  • Huang W, Klionsky D. Autophagy in yeast: a review of the molecular machinery. Cell. Struct. Funct. 27: 409–420 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Hugues-Ayala A. Microencapsulation of Lactobacillus rhamnosus GG in a matrix of calcium alginate coated with buttermilk proteins. MS thesis, Research Center for Food and Development. Hermosillo, Sonora, Mexico (2013)

  • Kailasapathy K. Encapsulation and controlled release techniques for administration and delivery of bioactive components in the health food sector. pp 307–346. In: Nutraceutical and Functional Food Processing Technology. Boye JI (ed). John Wiley & Sons, Ltd., Hoboken, NJ, USA (2015)

    Google Scholar 

  • Kolkman A, Olsthoorn M, Heeremans C, Heck A, Slijper M. Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol. Cell. Proteomics 4: 1–11 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman T, Varmanen P. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J. Proteomics 75: 1357–1374 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Kroll K, Pähtz V, Kniemeyer O. Elucidating the fungal stress response by proteomics. J. Proteomics 97: 151–163 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Kulshrestha S, Tyagi P, Sindhi V, Yadavilli K. Invertase and its applications—a brief review. J. Pharm. Res. 7: 792–797 (2013)

    CAS  Google Scholar 

  • Lu H, Zhu Y, Xiong J, Wang R, Jia Z. Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae. Microbiol. Res. 177: 28–33 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Lytras G, Zacharioudakis I, Tzamarias D. Asymmetric inheritance of the yeast chaperone Hsp26p and its functional consequences. Biochem. Biophys. Res. Commun. 491: 1055–1061 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Puniya AK, Singh K. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int. Dairy J. 16: 1190–1195 (2006)

    Article  CAS  Google Scholar 

  • Mathews S. Microencapsulation of probiotics by calcium alginate and gelatin and evaluation of its survival in simulated human gastro-intestinal condition. Int. J. Curr. Microbiol. Appl. Sci. 6: 2080–2087 (2017)

    Article  CAS  Google Scholar 

  • Mokarram R, Mortazavi S, Habibi-Najafi M. Shahidi F. The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res. Int. 42: 1040–1045 (2009)

    Article  CAS  Google Scholar 

  • Montero-Morán GM, Sampedro J, Saab-Rincón G, Cervantes-González MA, Huerta-Ocampo JA, De León-Rodríguez A, Barba de la Rosa AP. Biochemical and molecular characterization of a novel Cu/Zn superoxide dismutase from Amaranthus hypochondriacus L.: an intrinsically disordered protein. Appl. Biochem. Biotechnol. 176: 2328–2345 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Morales-Quinones M, Winston J, Stromhaug P. Propeptide of Aminopeptidase 1 mediates aggregation and vesicle formation in the Cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 287:10121–10133 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Mortazavian A, Razavi S, Ehsani M, Sohrabvandi S. Principles and methods of microencapsulation of probiotic microorganisms. Iran. J. Biotechnol. 5: 1–18 (2007)

    CAS  Google Scholar 

  • Parr C, Keates R, Bryksa B, Ogawa M, Yada R. The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 24: 467–480 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Ricke R, Bielinsky A. A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-α in budding yeast. J. Biol. Chem. 281: 18414–18425 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Ruiz L, Hidalgo C, Blanco-Míguez A, Lourenço A, Sánchez B, Margolles A. Tackling probiotic and gut microbiota functionality through proteomics. J. Proteomics 147: 28–39 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Saarela M, Mogensen G, Fonden R, Mättö J, Mattila-Sandholm T. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84: 197–215 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Seong K, Jung S, Kim H, Kim H, Jung Y, Choi S, Kim J. Yeast ribosomal protein S3 possesses a β-lyase activity on damaged DNA. FEBS Lett. 586: 356–361 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Shaner L, Trott A, Goeckeler J, Brodsky J, Morano K. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family. J. Biol. Chem. 279: 21992–22001 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Shori A. Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci. 24: 1–5 (2017)

    Article  Google Scholar 

  • Siciliano R, Mazzeo M. Molecular mechanisms of probiotic action: a proteomic perspective. Curr. Opin. Microbiol. 15: 390–396 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Gong Y, Li T, Yu C. Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal targets. Front. Cell. Infect. Microbiol. 7: 520 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verghese J, Abrams J, Wang Y, Morano K. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev. 76: 115–158 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Canadeo L, Huibregtse J. Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 114: 127–133 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Teng D, Wang X, Dai C, Wang J. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection. Can. J. Microbiol. 60: 681–686 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to CONACYT-Mexico for awarding us Grant-251744-Infrastructure. Thanks to Plataforma Analítica Institucional-Centro de Investigación en Alimentación y Desarrollo, A.C. (Project PAI-10363). We also thank CONACYT-Mexico Project CB-169358. Martha Beatriz Morales-Amparano thanks CONACYT-Mexico for her MSc fellowship (713677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ángel Huerta-Ocampo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Amparano, M.B., Ramos-Clamont Montfort, G., Baqueiro-Peña, I. et al. Proteomic response of Saccharomyces boulardii to simulated gastrointestinal conditions and encapsulation. Food Sci Biotechnol 28, 831–840 (2019). https://doi.org/10.1007/s10068-018-0508-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0508-9

Keywords

Navigation