Skip to main content
Log in

Mezcal: indigenous Saccharomyces cerevisiae strains and their potential as starter cultures

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, 19 indigenous mezcal Saccharomyces cerevisiae strains were screened for their tolerance to grow under different stress conditions and their potential use in fermentation. All strains were able to tolerate pH value of 3, significant levels of glucose (30%), ethanol (12% v/v), and temperature of 37 °C. Eleven of them were able to grow in presence of 15% of ethanol, but only CH7 and PA18 strains grew at 42 °C. Both were selected for evaluation of their fermentative abilities in maguey juice and in a synthetic medium incubated at 30 and 40 °C. Temperature of 40 °C had a positive effect on the ethanol production, increasing the productivity and efficiency in maguey fermentation. Ethyl acetate, isobutanol and isoamyl alcohols production was favored at 30 °C. Both evaluated strains presented a good fermentative capacity and production of volatile compounds, suggesting their potential use as starter cultures in mezcal fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aparecida-Oliveira V, Araújo-Vicente M, Gomes-Fieeto L, de Miranda-Castro I, Coutrim MX, Schüller D, Alves H, Casal M, de Oliveira-Santos J, Dias-Araújo L, Alves da Silva PH, Lopes-Brandão R. Biochemical and molecular characterization of Saccharomyces cerevisiae strains obtained from sugar-cane juice fermentations and their impact in cachaça production. Appl. Environ. Microbiol. 74: 693–701 (2008)

  • Badotti F, Belloch C, Rosa CA, Barrio E, Querol A. Physiological and molecular characterisation of Saccharomyces cerevisiae cachaça strains isolated from different geographic regions in Brazil. World J. Microbiol. Biotechnol. 26: 579-587 (2010)

    Article  CAS  Google Scholar 

  • Belloch C, Orlic S, Barrio E, Querol A. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int. J. Food Microbiol. 122: 188–195 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Beltran G, Novo M, Leberre V, Sokol S, Labourdette D, Guillamon JM, Mas A, François J, Rozes N. Integration of transcription and metabolic analysis for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Res. 6: 1167–1183 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Montaño DM, Délia ML, Estarrón-Espinosa M, Strehaiano P. Fermentative capability and aroma compound production by yeast strains isolated from Agave tequilana Weber juice. Enzyme Microb. Tech. 42: 608–616 (2008)

    Article  CAS  Google Scholar 

  • Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, Gutiérrez D, Gil C, del Olmo M. Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int. J. Food Microbiol. 145: 211–220. (2011)

    Article  CAS  PubMed  Google Scholar 

  • Kirchmayr MR, Segura-García LE, Lappe-Oliveras P, Moreno-Terrazas R, de la Rosa M, Gschaedler-Mathis A. Impact of enviromental conditions and process modifications on microbial diversity, fermentation efficiency and chemical profile during the fermentation of mezcal in Oaxaca. LWT—Food Sci. Technol. 79: 160–169 (2017)

    Article  CAS  Google Scholar 

  • Legras JL, Karst F. Optimization of interdelta analysis for Saccharomyces cerevisiae strain characterization. FEMS Microbiol. lett. 221: 249–255 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Liu PT, Lu L, Duan CQ, Yan GL. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT - Food Sci. Technol.71: 356–363 (2016)

    Article  CAS  Google Scholar 

  • Molina AM, Swiegers JH, Valera C, Pretorius IS, Agosin E. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl. Microbiol. Biotechnol. 77: 675–687 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Mouret JR, Camarasa C, Angenieux M. Aguera E, Perez M, Farines V, Sablayrolles JM. Kinetic analysis and gas-liquid balances of the production of fermentative aromas during winemaking fermentations: effect of assimilable nitrogen and temperature. Food Res. Int. 62: 1-10 (2004)

  • Norma Oficial Mexicana NOM-070-SCFI-2016. Bebidas alcohólicas-mezcal-especificaciones. Secretaria de economía. Publicada en el Diario Oficial de la Federación el 23 de febrero de 2017

  • Novo M, Gonzalez R, Bertran E, Martínez M, Yuste M, Morales P. Improvement fermenation kinetics by wine yeast strains evolved under ethanol stress. LWT-Food Sci. Technol. 58: 166–172 (2014)

    Article  CAS  Google Scholar 

  • Nuñez-Guerrero ME, Páez-Lerma JB, Rutiaga-Quiñones OM, González-Herrera SM, Soto-Cruz NO. Performance of mixtures of Saccharomyces and non-Saccharomyces native yeasts during alcoholic fermentation of Agave duranguensis juice. Food Microbiol. 54: 91–97 (2016)

    Article  CAS  Google Scholar 

  • Páez-Lerma JB, Arias-García A, Rutiaga-Quiñones OM, Barrio E, Soto-Cruz NO. Yeasts isolation from the alcoholic fermentation of Agave duranguensis during mezcal production. Food Biotechnol. 27: 342–356 (2013)

    Article  CAS  Google Scholar 

  • Pavel AB, Vasile CI. PyElph-a software tool for gel image analysis and phylogenetics. BMC Bioinformatics. 13: 9–14 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Prado-Jaramillo N, Estarrón-Espinosa M, Escalona-Buendía H, Cosío-Ramírez R, Martín-del-Campo S. Volatile compound generation during different stages of the tequila production process. A preliminary study. LWT-Food Sci. Technol. 61: 471–483 (2015)

    Article  CAS  Google Scholar 

  • Regodón JA, Peréz F, Valdés ME, De Miguel C, Ramírez M. A simple and effective procedure for selection of wine yeast strains. Food Microbiol. 14: 247–254 (1997)

    Article  Google Scholar 

  • Rodríguez ME, Infante JJ, Molina M, Domínguez M, Rebordinos L, Cantoral JM. Genomic characterization and selection of wine yeast to conduct industrial fermentations of a white wine produced in a SW Spain winery. J. Appl. Microbiol. 108: 1292–1302 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Rollero S, Bloem A, Camarasa C, Sanchez I, Ortiz-Julien A, Sablayrolles JM, Dequin S, Mouret JR. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl. Microbiol. Biotechnol. 99: 2291–2304 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Urbina JA, Arias-García JA, Ruiz-Terán F. Yeast species associated with spontaneous fermentation of taberna, a traditional palm wine from the southeast of Mexico. Ann. Microbiol. 65: 287–296 (2015)

    Article  CAS  Google Scholar 

  • Segura-García LE, Taillandier P, Brandam C, Gschaedler A. Fermentative capacity of Saccharomyces and non-Saccharomyces in agave juice and semi-synthetic medium. LWT-Food Sci. Technol. 60: 284–291 (2015)

    Article  CAS  Google Scholar 

  • Serra A, Strehaiano P, Taillandier P. Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth; impact of a wine yeast interspecific hybridization on these parameters. Int. J. Food Microbiol. 104: 257–265 (2005)

  • Settani L, Sannino C, Francesca N, Guarcello R, Moschetti G. Yeast ecology of vineyards within Marsala wine area (Western Sicily) in two consecutives vintages and selection of autochthonous Saccharomyces cerevisiae strains. J. Biosci. Bioeng. 114: 606–614 (2012)

    Article  CAS  Google Scholar 

  • Stanley D, Bandara A, Fraser S, Chamber, PJ, Stanley GA. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 109: 13–24 (2010)

    CAS  PubMed  Google Scholar 

  • Sun Y, Guo J, Liu F, Liu Y. Identification od indigenous yeast flora isolated from the five winegrape varieties harvested in Xiangning, China. Antonie Van Leeuwenhoek. 105: 533–540 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Torrea D, Valera C, Ugliano M, Ancin-Azpilicuenta C, Francis IL, Henschke PA. Comparison of inorganic and organic nitrogen supplementation of grape juice-effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chem. 127: 1072–1083 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Vera-Guzmán AM, López MG, Chávez-Servia JL. Chemical composition and volatile compounds in the artisanal fermentation of mezcal in Oaxaca, Mexico. Afr. J. Biotechnol. 11: 14344–14353 (2012)

    Google Scholar 

  • Verdugo-Valdez A, Segura García L, Kirchmayr M, Ramírez-Rodríguez P, González-Esquinca A, Coria R, Gschaedler-Mathis A. Yeast communities associated with artisanal mezcal fermentations from Agave salmiana. A. Van Leeuw. J. Microb. 100: 497–506 (2011)

    Article  CAS  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Dufour JP, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR. The Saccharomyces cerevisiae alcohol acetyl transferase gene ATF1 is a target of the cAMP/PKA and FGM nutrient-signalling pathways. FEMS Yeast Res. 4: 285–296 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México (DGAPA-UNAM), project IT-200812; and Programa de Apoyo a la Investigación y al posgrado (PAIP-UNAM), Project 50009100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Santiago-Urbina.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Terán, F., Martínez-Zepeda, P.N., Geyer-de la Merced, S.Y. et al. Mezcal: indigenous Saccharomyces cerevisiae strains and their potential as starter cultures. Food Sci Biotechnol 28, 459–467 (2019). https://doi.org/10.1007/s10068-018-0490-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0490-2

Keywords

Navigation