Skip to main content
Log in

Protective effect of Carthamus tinctorius L. seed on oxidative stress and cognitive impairment induced by chronic alcohol consumption in mice

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Chronic alcohol consumption induces damage to the brain that can cause various forms of dementia. An abundance of acetaldehyde is produced by excessive alcohol consumption and accumulates in the body to induce oxidative stress, apoptosis, and inflammation in neuronal cells, which results in learning and cognitive decline. In the present study, C57BL/N mice were orally administered alcohol (16%) and Carthamus tinctorius L. seed (CTS) (100 and 200 mg/kg/day). Behavioral experiments showed that memory and cognitive abilities were significantly higher in the CTS groups than the alcohol-treated control group in the T-maze test, novel object recognition test, and Morris water maze test. In addition, CTS inhibited alcohol-induced lipid peroxidation and nitric oxide production in the brain, kidney, and liver. Moreover, alcohol increased acetylcholinesterase activity in the brain, but this was significantly decreased by the administration of CTS. Therefore, CTS may play role in the prevention of alcohol-related dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arendt T. Impairment in memory function and neurodegenerative changes in the cholinergic basal forebrain system induced by chronic intake of ethanol. In: Cell and Animal Models in Aging and Dementia Research. Hoyer S, Müller D and Plaschke K (eds). Springer, Vienna, pp. 173–187 (1994)

    Chapter  Google Scholar 

  • Asari MA, Mohd Ismail ZI, Mohd Yusof NA. Evaluation of spirulina supplementation on intermittent binge ethanol-induced neurotoxicity in dentate gyrus of rats. Int. J. Appl. Res. Nat. Prod. 6: 8–14 (2013)

    Google Scholar 

  • Bae SJ, Shim SM, Park YJ, Lee JY, Chang EJ, Choi SW. Cytotoxicity of phenolic compounds isolated from seeds of safflower (Carthamus tinctorius L.) on cancer cell lines. Food Sci. Biotechnol. 11: 140–146 (2002)

    CAS  Google Scholar 

  • Balduini W, Costa LG. Effects of ethanol on muscarinic receptor-stimulated phosphoinositide metabolism during brain development. J. Pharmacol. Exp. Ther. 250: 541–547 (1989)

    CAS  PubMed  Google Scholar 

  • Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching to-sample learning task to study ‘recognition memory’. Nat. Protoc. 1: 1306–1311 (2006)

    Article  Google Scholar 

  • Buhot MC, Martin S, Segu L. Role of serotonin in memory impairment. Ann. Med. 32: 210–221 (2000)

    Article  CAS  Google Scholar 

  • Chen G, Luo J. Anthocyanins: are they beneficial in treating ethanol neurotoxicity? Neurotox. Res. 17: 91–101 (2016)

    Article  Google Scholar 

  • Cho SH, Choi SW, Choi YS, Lee WJ. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high-cholesterol diets. J. Nutr. Sci. Vitaminol. 50: 32–37 (2004)

    Article  CAS  Google Scholar 

  • Cho SH, Park YY, Yoon JY, Choi SW, Ha TY. The effect of polyphenols from safflower seed on HMG-CoA reductase (HMGR) activity, LDL oxidation and Apo A1 secretion. Korean J. Food Sci. Technol. 38: 279–283 (2006)

    Google Scholar 

  • Climent E, Pascual M, Renau-Piqueras J, Guerri C. Ethanol exposure enhances cell death in the developing cerebral cortex: role of brain-derived neurotrophic factor and its signaling pathways. J. Neurosci. Res. 68: 213–225 (2002)

    Article  CAS  Google Scholar 

  • Cohen AC, Tong M, Wands JR, de la Monte SM. Insulin and insulin-like growth factor resistance with neurodegeneration in an adult chronic ethanol exposure model. Alcohol Clin. Exp. Res. 31: 1558–1573 (2007)

    Article  CAS  Google Scholar 

  • Croxson PL, Browning PG, Gaffan D, Baxter MG. Acetylcholine facilitates recovery of episodic memory after brain damage. J. Neurosci. 32: 13787–13795 (2012)

    Article  CAS  Google Scholar 

  • Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 186: 421 (1990)

    Article  CAS  Google Scholar 

  • Epstein M. Alcohol’s impact on kidney function. Alcohol Health Res. World 21: 84–92 (1997)

    CAS  Google Scholar 

  • Esmaeili MA, Sonboli A, Kanani MR, Sadeghi H. Salvia sahendica prevents tissue damages induced by alcohol in oxidative stress conditions: effect on liver and kidney oxidative parameters. J. Med. Plants Res. 3: 276–283 (2009)

    Google Scholar 

  • Friedman J. Why is the nervous system vulnerable to oxidative stress? In: Oxidative Stress and Free Radical Damage in Neurology. Gadoth N, Gobel HH (eds). Humana Press, Totowa, pp. 19–27 (2011)

    Google Scholar 

  • Gerridzen IJ, Hertogh CMPM, Depla MF, Veenhuizen RB, Verschuur EML, Joling KJ. Neuropsychiatric symptoms in people with Korsakoff syndrome and other alcohol-related cognitive disorders living in specialized long-term care facilities: prevalence, severity, and associated caregiver distress. J. Am. Med. Dir. Assoc. 19: 240–247 (2018)

    Article  Google Scholar 

  • Grant BF, Dawson DA, Stinson FS, Chou SP, Dufour MC, Pickering RP. The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991–1992 and 2001–2002. Drug Alcohol Depen. 74: 223–234 (2004)

    Article  Google Scholar 

  • Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin. Exp. Res. 22: 304–312 (1998)

    Article  CAS  Google Scholar 

  • Guo Z, Li J. Chlorogenic acid prevents alcohol-induced brain damage in neonatal rat. Transl. Neurosci. 8: 176–181 (2017)

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC. Oxygen radicals in the nervous system. Trends Neurosci. 8: 22–26 (1985)

    Article  CAS  Google Scholar 

  • Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y. Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic. Biol. Med. 45:1542–1550 (2008)

    Article  CAS  Google Scholar 

  • Harper C, Matsumoto I. Ethanol and brain damage. Curr. Opin. Pharmacol. 5: 73–78 (2005)

    Article  CAS  Google Scholar 

  • Herrera DG, Yague AG, Johnsen-Soriano S, Bosch-Morell F, Collado-Morente L, Muriach M, Romero FJ, Garcia-Verdugo JM. Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant. Proc. Natl. Acad. Sci. U. S. A. 100: 7919–7924 (2003)

    Article  CAS  Google Scholar 

  • Hiramatsu M, Takahashi T, Komatsu M, Kido T, Kasahara Y. Antioxidant and neuroprotective activities of Mogami-benibana (safflower, Carthamus tinctorius Linne). Neurochem. Res. 34: 795–805 (2014)

    Article  Google Scholar 

  • Holownia A, Ledig M, Brszko JJ, Ménez JF. Acetaldehyde cytotoxicity in cultured rat astrocytes. Brain Res. 833: 202–208 (1999)

    Article  CAS  Google Scholar 

  • Holownia A, Ledig M, Mapoles J, Ménez JF. Acetaldehyde-induced growth inhibition in cultured rat astroglial cells. Alcohol 13: 93–97 (1996)

    Article  CAS  Google Scholar 

  • Hou Y, Aboukhatwa MA, Lei DL, Manaye K, Khan I, Luo Y. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology 58: 911–920 (2010)

    Article  CAS  Google Scholar 

  • Huang WJ, Zhang X, Chen WW. Association between alcohol and Alzheimer’s disease. Exp. Ther. Med. 12: 1247–1250 (2016)

    Article  CAS  Google Scholar 

  • Jamal M, Ameno K, Miki T, Tanaka N, Ohkubo E, Kinoshita H. Effects of systemic nicotine, alcohol or their combination on cholinergic markers in the frontal cortex and hippocampus of rat. Neurochem. Res. 35: 1064–1070 (2010)

    Article  CAS  Google Scholar 

  • Jensen GB, Pakkenberg B. Do alcoholics drink their neurons away? Lancet 342: 1201–1204 (1993)

    Article  CAS  Google Scholar 

  • Jun MS, Ha YM, Kim HS, Jang HJ, Kim YM, Lee YS, Kim HJ, Seo HG, Lee JH, Lee SH, Chang KC. Anti-inflammatory action of methanol extract of Carthamus tinctorius involves in heme oxygenase-1 induction. J. Ethnopharmacol. 133: 524–530 (2011)

    Article  Google Scholar 

  • Kalmijn S. Fatty acid intake and the risk of dementia and cognitive decline: a review of clinical and epidemiological studies. J. Nutr. Health Aging 4: 202–207 (2000)

    CAS  PubMed  Google Scholar 

  • Kang GH, Chang EJ, Park SW. Antioxidative activity of phenolic compounds in roasted safflower (Carthamus tinctorius L.) seeds. Prev. Nutr. Food Sci. 4: 221–225 (1999)

    CAS  Google Scholar 

  • Kavitha G, Damodara Reddy V, Paramahamsa M, Akhtar PM, Varadacharyulu NC. Role of nitric oxide in alcohol-induced changes in lipid profile of moderate and heavy alcoholics. Alcohol 42: 47–53 (2008)

    Article  CAS  Google Scholar 

  • Kim EO, Oh JH, Lee SK, Lee JY, Choi SW. Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Sci. Biotechnol. 16: 71–77 (2007)

    CAS  Google Scholar 

  • Koop DR. Alcohol metabolism’s damaging effects on the cell: a focus on reactive oxygen generation by the enzyme cytochrome P450 2E1. Alcohol Res. Health 29: 274–280 (2006)

    PubMed  Google Scholar 

  • Kril JJ, Halliday GM. Brain shrinkage in alcoholics: a decade on and what have we learned? Prog. Neurobiol. 58: 381–387 (1999)

    Article  CAS  Google Scholar 

  • Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav. Rev. 26: 91–104 (2002)

    Article  CAS  Google Scholar 

  • Lee YS, Choi CW, Kim JJ, Ganapathi A, Udayakumar R, Kim SC. Determination of mineral content in methanolic safflower (Carthamus tinctorius L.) seed extract and its effect on osteoblast markers. Int. J. Mol. Sci. 10: 292–305 (2009)

    Article  CAS  Google Scholar 

  • Lowenstein CJ, Dinerman JL, Synder SH. Nitric oxide: a physiologic messenger. Ann. Intern. Med. 120: 227–237 (1994)

    Article  CAS  Google Scholar 

  • Montgomery KC. A test of two explanations of spontaneous alternation. J. Comp. Physiol. Psych. 45: 287–293 (1952)

    Article  CAS  Google Scholar 

  • Montoliu C, Valles S, Renau-Piqueras J, Guerii C. Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: Effect of chronic ethanol consumption. J. Neurochem. 63: 1855–1862 (1994)

    Article  CAS  Google Scholar 

  • Moon KD, Back SS, Kim JH, Jeon SM, Lee MK, Choi MS. Safflower seed extract lowers plasma and hepatic lipids in rats fed high-cholesterol diet. Nutr. Res. 21: 895–904 (2001)

    Article  CAS  Google Scholar 

  • Morris R. Developments of a water-maze procedure for studying a spatial learning in the rat. J. Neurosci. Methods 11: 47–60 (1984)

    Article  CAS  Google Scholar 

  • Nakamura K, Iwahashi K, Furukawa A, Ameno K, Kinoshita H, Ijiri I, Sekine Y, Suzuki K, Iwata Y, Minabe Y, Mori N. Acetaldehyde adducts in the brain of alcoholics. Arch. Toxicol. 77: 591–593 (2003)

    Article  CAS  Google Scholar 

  • Niess AM, DickHuth HH, Northoff H, Fehrenbach E. Free radicals and oxidative stress in exercise-immunological aspects. Exerc. Immunol. Rev. 5: 22–56 (1999)

    CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358 (1979)

    Article  CAS  Google Scholar 

  • Olney JW, Tenkova T, Dikranian K, Qun YQ, Labruyere J, Ikonomidou C. Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Dev. Brain Res. 133: 115–126 (2002)

    Article  CAS  Google Scholar 

  • Ozbek E. Induction of oxidative stress in kidney. Int. J. Nephrol. 2012: 465897 (2012)

    Article  Google Scholar 

  • Park CH, Lee AY, Kim JH, Seong SH, Jang GY, Cho EJ, Choi JS, Kwon J, Kim YO, Lee SW, Yokozawa T, Shin YS. Protective effect of safflower seed on cisplatin-induced renal damage in mice via oxidative stress and apoptosis-mediated pathways. Am. J. Chin. Med. 46: 1–18 (2018)

    Article  Google Scholar 

  • Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J. Neuroinflamm. 18: 10 (2008)

    Article  Google Scholar 

  • Quertemont E, Grant KA, Correa M, Arizzi MN, Salamone JD, Tambour S, Aragon CM, McBride WJ, Rodd ZA, Goldstein A, Zaffaroni A, Li TK, Pisano M, Diana M. The role of acetaldehyde in the central effects of ethanol. Alcohol Clin. Exp. Res. 29: 221–234 (2005)

    Article  CAS  Google Scholar 

  • Roh JS, Sun WS, Oh SU, Lee JI, Oh WT, Kim JH. In vitro antioxidant activity of safflower (Carthamus tinctorius L.) seeds. Food Sci. Biotechnol. 8: 88–92 (1999)

    Google Scholar 

  • Room R, Babor T, Rehm J. Alcohol and public health. Lancet 365: 519–530 (2005)

    Article  Google Scholar 

  • Sakamura A, Terayama Y, Kawakatsu S, Ichihara A, Saito H. Conjugated serotonins and phenolic constituents in safflower seed (Carthamus tinctorius L.). Argric. Biol. Chem. 44: 2951–2954 (1980)

    CAS  Google Scholar 

  • Schmidt HH, Warner TD, Nakane M, Forstermann U, Murad F. Regulation and sub cellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol. Pharmacol. 41: 615–624 (1992)

    CAS  PubMed  Google Scholar 

  • Seo HJ, Kim JH, Kwak DY, Jeon SM, Ku SK, Lee JH, Moon KD, Choi MS. The effects of safflower seed powder and its fraction on bone tissue in rib-fractured rats during the recovery. Korean J. Nutr. 33: 411–420 (2000)

    Google Scholar 

  • Seyedabadi M, Fakhfouri G, Ramezani V, Mehr SE, Rahimian R. The role of serotonin in memory: interactions with neurotransmitters and downstream signaling. Exp. Brain Res. 232: 723–738 (2014)

    Article  CAS  Google Scholar 

  • Shaw S, Jayatilleke E. The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem. J. 268: 579–583 (1990)

    Article  CAS  Google Scholar 

  • Smith BR, Aragon CM, Amit Z. Catalase and the production of brain acetaldehyde: a possible mediator for the psychopharmacological effects of ethanol. Addict. Biol. 2: 277–289 (1997)

    Article  CAS  Google Scholar 

  • Song HR, Ra DK, Kim JS, Jung TS, Kim YH, Kang HJ, Kang CB, Yeon SC, Kim EH, Lee HJ, Shin GW, Park MR, Kim GS. Effects of safflower seed on new bone formation. J. Vet. Clin. 19: 66–72 (2002)

    Google Scholar 

  • Srikumar BN, Ramkumar K, Raju TR, Shankaranarayana Rao BS, Assay of acetylcholinesterase activity in the brain. In: Brain and Behavior. Raju TR, Kutty BM, Sathyaprabha TN, Shanakranarayana Rao BS (eds). National Institute of Mental Health and Neurosciences, Bangalore, India, pp. 142–144 (2004)

  • Takii T, Hayashi M, Hiroma H, Chiba T, Kawashima S, Zhang HL, Nagatsu A, Sakakibara J, Onozaki K. Serotonin derivative, N-(p-coumaroyl)serotonin, isolated from safflower (Carthamus tinctorious L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor (FGF) of epidermal growth factor (EGF). J. Biochem. 125: 910–915 (1999)

    Article  CAS  Google Scholar 

  • Thomas VS, Rockwood KJ. Alcohol abuse, cognitive impairment, and mortality among older people. J. Am. Geriatr. Soc. 49: 415–420 (2001)

    Article  CAS  Google Scholar 

  • Tiwari V, Chopra K. Attenuation of oxidative stress, neuroinflammation and apoptosis by prevents cognitive deficits in rats postnatally exposed ethanol. Psychopharmacology 224: 519–535 (2012)

    Article  CAS  Google Scholar 

  • Tiwari V, Chopra K. Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain. Neuroscience 244: 147–158 (2013)

    Article  CAS  Google Scholar 

  • Tiwari V, Kuhad A, Chopra K. Suppression of neuro-inflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats. Behav. Brain Res. 203: 296–303 (2009)

    Article  CAS  Google Scholar 

  • Tiwari V, Kuhad A, Chopra K. Epigallocatechin-3-gallate ameliorates alcohol-induced cognitive dysfunctions and apoptotic neurodegeneration in the developing rat brain. Int. J. Neuropsychopharmacol. 13: 1053–1066 (2010)

    Article  CAS  Google Scholar 

  • Tong M, Longato L, Nguyen QGL, Chen WC, Spaisman A, Monte SM. Acetaldehyde-mediated neurotoxicity: relative to fetal alcohol spectrum disorders. Oxid. Med. Cell Longev. 2011: 213–286 (2011)

    Article  Google Scholar 

  • Vallés SL, Blanco AM, Pascual M, Guerri C. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol. 14: 365–371 (2004)

    Article  Google Scholar 

  • Wagner JL, Zhou FC, Goodlett CR. Effects of one-and three-day binge alcohol exposure in neonatal C57BL/6 mice on spatial learning and memory in adolescence and adulthood. Alcohol 38: 99–111 (2014)

    Article  Google Scholar 

  • Wang Y, Chen P, Tang C, Wang Y, Li Y, Zhang H. Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L. J. Ethnopharmacol. 151: 944–950 (2014)

    Article  Google Scholar 

  • Wang X, Liu M, Zhang C, Li S, Yang Q, Zhang J, Gong Z, Han J, Jia L. Antioxidant activity and protective effects of enzyme-extracted Oudemansiella radiata polysaccharides on alcohol-induced liver injury. Molecules 23: 481 (2018)

    Article  Google Scholar 

  • Woolf NJ. A possible role for cholinergic neurons of the basal forebrain and pontomesencephalon in consciousness. Conscious. Cogn. 6: 574–596 (1997)

    Article  CAS  Google Scholar 

  • Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res. Health 27: 277–284 (2003)

    PubMed  Google Scholar 

  • Yu L, Chen C, Wang LF, Kuang X, Liu K, Zhang H, Du JR. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. Plos One 8: e55839 (2013)

    Article  CAS  Google Scholar 

  • Zhang HL, Nagatsu A, Watanabe T, Sakakibara J, Okuyama H. Antioxidative compounds isolated from safflower (Carthamus tinctorius L.) oil cake. Chem. Pharm. Bull. 45: 1910–1914 (1997)

    Article  CAS  Google Scholar 

  • Zhang LL, Tian K, Tang ZH, Chen XJ, Bian ZX, Wang YT, Lu JJ. Phytochemistry and Pharmacology of Carthamus tinctorius L. Am. J. Chin. Med. 44: 197–226 (2016)

    Article  CAS  Google Scholar 

  • Zimatkin SM, Pronko SP, Vasiliou V, Gonzalez FJ, Deitrich RA. Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin. Exp. Res. 30: 1500–1505 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01312301)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Ju Cho.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.H., Lee, A.Y., Park, C.H. et al. Protective effect of Carthamus tinctorius L. seed on oxidative stress and cognitive impairment induced by chronic alcohol consumption in mice. Food Sci Biotechnol 27, 1475–1484 (2018). https://doi.org/10.1007/s10068-018-0472-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0472-4

Keywords

Navigation