Orally administration of Neolentinus lepideus extracts attenuated ethanol induced accumulation of hepatic lipid in mice

Abstract

In this study, we examined the effects of the water extract of Neolentinus lepideus (WENL), an edible mushroom, on ethanol-induced hepatic lipid accumulation. Ethanol-induced oil red O-positive spots on AML-12 hepatocytes were attenuated by WENL treatment. Furthermore, the oral administration of WENL in acute and chronic ethanol-fed mouse models resulted in the decrease in blood triglyceride and the accumulation of lipid droplets in the liver. Interestingly, the transcriptional expression related to lipid metabolisms, such as sterol regulatory element-binding protein 1, and cytochrome P450 2E1, was decreased by WENL treatment in both ethanol-induced AML-12 hepatocytes and our chronic ethanol-fed mouse models. In addition, WENL effectively attenuated the ethanol induced activation of MAP kinases and NF-κB in AML-12 hepatocytes. Taken together, our results suggested that WENL can be effective in alleviating alcohol-induced hepatic lipid accumulation and may be used as potential candidate for the prevention of alcoholic fatty liver disease.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdullah N, Ismail SM, Aminudin N, Shuib AS, Lau BF. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities. Evid. Based Complement Alternat. Med. 2012: 464238 (2012)

    Article  Google Scholar 

  2. Alberts AW, Strauss AW, Hennessy S, Vagelos PR. Regulation of synthesis of hepatic fatty acid synthetase: binding of fatty acid synthetase antibodies to polysomes. Proc. Natl. Acad. Sci. USA. 72: 3956–3960 (1975)

    CAS  Article  Google Scholar 

  3. Bertola A, Mathews S, Ki SH, Wang H, Gao B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 8: 627–637 (2013)

    Article  Google Scholar 

  4. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 89: 331–340 (1997)

    CAS  Article  Google Scholar 

  5. Cao YW, Jiang Y, Zhang DY, Zhang XJ, Hu YJ, Li P, Su H, Wan JB. The hepatoprotective effect of aqueous extracts of Penthorum chinense Pursh against acute alcohol-induced liver injury is associated with ameliorating hepatic steatosis and reducing oxidative stress. Food Funct. 6: 1510–1517 (2015)

    CAS  Article  Google Scholar 

  6. Chang R. Functional properties of edible mushrooms. Nutr. Rev. 54: S91–S93 (1996)

    CAS  Article  Google Scholar 

  7. Chen LY, Chen Q, Cheng YF, Jin HH, Kong DS, Zhang F, Wu L, Shao JJ, Zheng SZ. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis. Biomed. Pharmacother. 79: 35–43 (2016)

    CAS  Article  Google Scholar 

  8. Doskocil I, Havlik J, Verlotta R, Tauchen J, Vesela L, Macakova K, Opletal L, Kokoska L, Rada V. In vitro immunomodulatory activity, cytotoxicity and chemistry of some central European polypores. Pharm. Biol. 54: 2369–2376 (2016)

    CAS  Article  Google Scholar 

  9. Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes. Metab. 12 Suppl. 2: 83–92 (2010)

    CAS  Article  Google Scholar 

  10. Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods. 5 (2016)

    Article  Google Scholar 

  11. Gouillon Z, Lucas D, Li J, Hagbjork AL, French BA, Fu P, Fang C, Ingelman-Sundberg M, Donohue TM, Jr., French SW. Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc. Soc. Exp. Biol. Med. 224: 302–308 (2000)

    CAS  Article  Google Scholar 

  12. Gramenzi A, Caputo F, Biselli M, Kuria F, Loggi E, Andreone P, Bernardi M. Review article: alcoholic liver disease–pathophysiological aspects and risk factors. Aliment. Pharmacol. Ther. 24: 1151–1161 (2006)

    CAS  Article  Google Scholar 

  13. Han JY, Lee S, Yang JH, Kim S, Sim J, Kim MG, Jeong TC, Ku SK, Cho IJ, Ki SH. Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation. J. Ginseng Res. 39: 105–115 (2015)

    CAS  Article  Google Scholar 

  14. Hosoe T, Sakai H, Ichikawa M, Itabashi T, Ishizaki T, Kawai K. Lepidepyrone, a new gamma-pyrone derivative, from Neolentinus lepideus, inhibits hyaluronidase. J. Antibiot (Tokyo). 60: 388–390 (2007)

    CAS  Article  Google Scholar 

  15. Ishihara A, Ide Y, Bito T, Ube N, Endo N, Sotome K, Maekawa N, Ueno K, Nakagiri A. Novel tyrosinase inhibitors from liquid culture of Neolentinus lepideus. Biosci. Biotechnol. Biochem. 82: 22–30 (2018)

    CAS  Article  Google Scholar 

  16. Jarvelainen HA, Fang C, Ingelman-Sundberg M, Lukkari TA, Sippel H, Lindros KO. Kupffer cell inactivation alleviates ethanol-induced steatosis and CYP2E1 induction but not inflammatory responses in rat liver. J. Hepatol. 32: 900–910 (2000)

    CAS  Article  Google Scholar 

  17. Kang L, Chen X, Sebastian BM, Pratt BT, Bederman IR, Alexander JC, Previs SF, Nagy LE. Chronic ethanol and triglyceride turnover in white adipose tissue in rats: inhibition of the anti-lipolytic action of insulin after chronic ethanol contributes to increased triglyceride degradation. J. Biol. Chem. 282: 28465–28473 (2007)

    CAS  Article  Google Scholar 

  18. Kanuri G, Weber S, Volynets V, Spruss A, Bischoff SC, Bergheim I. Cinnamon extract protects against acute alcohol-induced liver steatosis in mice. J. Nutr. 139: 482–487 (2009)

    CAS  Article  Google Scholar 

  19. Leung TM, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J. Hepatol. 58: 395–398 (2013)

    CAS  Article  Google Scholar 

  20. Li M, He Y, Zhou Z, Ramirez T, Gao Y, Gao Y, Ross RA, Cao H, Cai Y, Xu M, Feng D, Zhang P, Liangpunsakul S, Gao B. MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47phox-oxidative stress pathway in neutrophils. Gut. 66: 705–715 (2017)

    CAS  Article  Google Scholar 

  21. Lu Y, Cederbaum AI. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44: 723–738 (2008)

    CAS  Article  Google Scholar 

  22. Lu Y, Zhuge J, Wang X, Bai J, Cederbaum AI. Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology. 47: 1483–1494 (2008)

    CAS  Article  Google Scholar 

  23. Ma Y, Xu L, Rodriguez-Agudo D, Li X, Heuman DM, Hylemon PB, Pandak WM, Ren S. 25-Hydroxycholesterol-3-sulfate regulates macrophage lipid metabolism via the LXR/SREBP-1 signaling pathway. Am. J. Physiol. Endocrinol. Metab. 295: E1369–E1379 (2008)

    CAS  Article  Google Scholar 

  24. Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J. Endocrinol. 197: 189–204 (2008)

    CAS  Article  Google Scholar 

  25. Mattila P, Konko K, Eurola M, Pihlava JM, Astola J, Vahteristo L, Hietaniemi V, Kumpulainen J, Valtonen M, Piironen V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 49: 2343–2348 (2001)

    CAS  Article  Google Scholar 

  26. Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71: 109–114 (2000)

    CAS  Article  Google Scholar 

  27. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 29: 413–580 (1997)

    CAS  Article  Google Scholar 

  28. Siler SQ, Neese RA, Hellerstein MK. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am. J. Clin. Nutr. 70: 928–936 (1999)

    CAS  Article  Google Scholar 

  29. Song BJ, Abdelmegeed MA, Henderson LE, Yoo SH, Wan J, Purohit V, Hardwick JP, Moon KH. Increased nitroxidative stress promotes mitochondrial dysfunction in alcoholic and nonalcoholic fatty liver disease. Oxid. Med. Cell Longev. 2013: 781050 (2013)

    Article  Google Scholar 

  30. Tan X, Sun X, Li Q, Zhao Y, Zhong W, Sun X, Jia W, McClain CJ, Zhou Z. Leptin deficiency contributes to the pathogenesis of alcoholic fatty liver disease in mice. Am. J. Pathol. 181: 1279–1286 (2012)

    CAS  Article  Google Scholar 

  31. Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell. Mol. Life Sci. 62: 1784–1803 (2005)

    CAS  Article  Google Scholar 

  32. Ukawa Y, Furuichi Y, Kokean Y, Nishii T, Hisamatsu M. Effect of Hatakeshimeji (Lyophyllum decastes Sing.) Mushroom on serum lipid levels in rats. J. Nutr. Sci. Vitaminol (Tokyo). 48: 73–76 (2002)

    CAS  Article  Google Scholar 

  33. Ukawa Y, Izumi Y, Ohbuchi T, Takahashi T, Ikemizu S, Kojima Y. Oral administration of the extract from Hatakeshimeji (Lyophyllum decastes Sing.) mushroom inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Nutr. Sci. Vitaminol (Tokyo). 53: 293–296 (2007)

    CAS  Article  Google Scholar 

  34. Wada S, Yamazaki T, Kawano Y, Miura S, Ezaki O. Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice. J. Hepatol. 49: 441–450 (2008)

    CAS  Article  Google Scholar 

  35. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60: 258–274 (2002)

    CAS  Article  Google Scholar 

  36. Xiao J, Wang J, Xing F, Han T, Jiao R, Liong EC, Fung ML, So KF, Tipoe GL. Zeaxanthin dipalmitate therapeutically improves hepatic functions in an alcoholic fatty liver disease model through modulating MAPK pathway. PLoS One. 9: e95214 (2014)

    Article  Google Scholar 

  37. Yang L, Rozenfeld R, Wu D, Devi LA, Zhang Z, Cederbaum A. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy. Free Radic. Biol. Med. 68: 260–267 (2014)

    CAS  Article  Google Scholar 

  38. Yoon KN, Alam N, Lee KR, Shin PG, Cheong JC, Yoo YB, Lee TS. Antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus. Molecules. 16: 2334–2347 (2011a)

    CAS  Article  Google Scholar 

  39. Yoon KN, Lee JS, Kim HY, Lee KR, Shin PG, Cheong JC, Yoo YB, Alam N, Ha TM, Lee TS. Appraisal of Antihyperlipidemic Activities of Lentinus lepideus in Hypercholesterolemic Rats. Mycobiology. 39: 283–289 (2011b)

    CAS  Article  Google Scholar 

  40. Zaidman BZ, Yassin M, Mahajna J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl. Microbiol. Biotechnol. 67: 453–468 (2005)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Rural Development Administration (PJ01022310), Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seung Ho Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, K.M., Park, Y.N., Kwon, O.Y. et al. Orally administration of Neolentinus lepideus extracts attenuated ethanol induced accumulation of hepatic lipid in mice. Food Sci Biotechnol 28, 243–251 (2019). https://doi.org/10.1007/s10068-018-0451-9

Download citation

Keywords

  • Liver steatosis
  • Neolentinus lepideus
  • Hepatocytes cells
  • Fatty liver