Does Curcuma longa root powder have an effect against CCl4-induced hepatotoxicity in rats: a protective and curative approach

Abstract

This study was conducted to investigate potentially protective and curative effects of Curcuma longa root (turmeric) powder on CCl4-induced hepatotoxicity in rats. Turmeric was administered before (preventive effect) or after (curative effect) treatment with CCl4. Total phenolic and flavonoid levels were 26.35 mg GAE/g and 12.35 mg CE/g, respectively. Using HPLC analysis, turmeric powder was rich in curcumin (62.97%), demethoxycurcumin (20.86%) and bisdemethoxycurcumin (16.17%). Curcuma longa powder showed important in vitro antioxidant activities. Results showed that the activities of aspartate aminotransaminase and alanine aminotransaminase, and the levels of bilirubin and serum lipids were increased in CCl4-treated animals. However, total protein and albumin levels and antioxidant enzyme activities were decreased. Turmeric administration, before or after CCl4 treatment, significantly decreased the activities of marker enzymes and lipid levels in serum. Moreover, total protein and albumin contents were restored to nearly normal levels after turmeric administration accompanied with increase of antioxidant enzymes activities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdel-Lateef E, Mahmoud F, Hammam O, El-Ahwany E, El-Wakil E, Kandil S, Abu Taleb H, El-Sayed M, Hassenein H (2016) Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharmacol. 66: 387–98

    CAS  Article  Google Scholar 

  2. Aebi H. Catalase in vitro. Methods Enzymol. 105: 121–126 (1984).

    CAS  Article  Google Scholar 

  3. Akinola A, Ahmad S, Maziah M. Total antioxidant capacity, total phenolic compounds and the effects of solvent concentration on flavonoid content in Curcuma longa and Curcuma xanthorhhiza rhizomes. Med. Aromat. Plants 3: 1–4 (2014).

    Article  Google Scholar 

  4. Al-Jassabi S, Ahmed KA, Ameen M. Antioxidant effect of curcumin against microcystin-LR-induced renal oxidative damage in Balb/c mice. Trop. J. Pharm. Res. 11: 531–536 (2012).

    CAS  Article  Google Scholar 

  5. Aziz MT, El Ibrashy IN, Mikhailidis DP, Rezq AM, Wassef MA, Fouad HH, Ahmed HH, Sabry DA, Shawky HM, Hussein RE. Signaling mechanisms of a water soluble curcumin derivative in experimental type 1 diabetes with cardiomyopathy. Diabetol. Metab. Syndr. 5, 5–13 (2013).

    Article  Google Scholar 

  6. Bereswill S, Munoz M, Fischer A, Plickert R, Haag L, Otto B, Kuhl AA, Loddenkemper C, Gobel UB, Heimesaat MM. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One. 5: e15099 (2010).

    CAS  Article  Google Scholar 

  7. Beyer WF, Fridovich I: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions: Anal. Biochem. 161: 559–566 (1987).

    CAS  Google Scholar 

  8. Chinedum E, Kate E, Sonia C, Ironkwe A, Andrew I (2015) Polyphenolic composition and antioxidant Activities of 6 New turmeric (Curcuma Longa L.) accessions. Recent Pat. Food Nutr. Agric. 7: 22–27

    CAS  Article  Google Scholar 

  9. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agriculture and Food Chemistry. 50 (10): 3010–3014 (2002).

    CAS  Article  Google Scholar 

  10. Dufour C, Loonis M, Dangles O. Inhibition of the peroxidation of linoleic acid by the flavonoid quercetin within their complex with human serum albumin. Free Radical Biol. Med. 43: 241–252 (2007).

    CAS  Article  Google Scholar 

  11. Farombi EO, Olowu BI, Emerole GO (2000) Effect of three structurally related antimalarial drugs on liver microsomal components and lipid peroxidation in rats. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 126: 217–224

    CAS  Google Scholar 

  12. Farver DK, Lavin MN: Quinine-induced hepatotoxicity. Ann. Pharmacother. 33: 32-34 (1999).

    CAS  Article  Google Scholar 

  13. Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol. 105: 114–121 (1984).

    CAS  Article  Google Scholar 

  14. Friedman SL. Liver fibrosis - from bench to bedside. J. Hepatol. 38: S38–S53 (2003).

    Article  Google Scholar 

  15. Ginès P, Cardenas A, Arroyo V, Rodes J. Management of cirrhosis and ascites. N. Engl. J. Med. 350: 1646–1654 (2004).

    Article  Google Scholar 

  16. Girish C, Pradhan SC: Drug development for liver diseases: focus on picroliv, ellagic acid and curcumin. Fundam. Clin. Pharmacol. 22: 623–632 (2008).

    CAS  Article  Google Scholar 

  17. Hatano T, Kagawa H, Yasuhara T, Okuda T: Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull. 36: 2090–2097 (1988).

    CAS  Article  Google Scholar 

  18. Kadir FA, Kassim NM, Abdulla MA, Yehye WA. Hepatoprotective role of ethanolic extract of Vitex negundo in thioacetamide-induced liver fibrosis in male rats,” Evid Based Compl. Alt. Med. 20: 1–9 (2013).

    Google Scholar 

  19. Kim HJ, Yoo HS, Kim JC, Park CS, Choi MS, Kim M, Choi H, Min JS, Kim YS, Yoon SW, Ahn JK. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J. Ethnopharmacol. 124: 189–196 (2009).

    Article  Google Scholar 

  20. Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 47: 2083–2091 (2009).

    CAS  Article  Google Scholar 

  21. Kumar A, Monika S, Singh PP, Singh SK, Pratima R, Pandey KD. Antioxidant Efficacy and curcumin content of turmeric (Curcuma longa L.) flower. Int. J. Curr. Pharm. Res. 8: 112–114 (2016).

    CAS  Google Scholar 

  22. Nakamura T, Akiyoshi H, Saito I, Sato K: Adenovirus-mediated gene expression in the septal cells of cirrhotic rat livers. J Hepatol. 30: 101–106 (1999).

    CAS  Article  Google Scholar 

  23. Pari L, Amali DR: Protective role of tetrahydrocurcumin (THC) an active principle of turmeric on chloroquine induced hepatotoxicity in rats. J Pharm Sci. 8: 115–123 (2005).

    CAS  Google Scholar 

  24. Prieto P, Pineda M, Aguilar M: Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 269: 337–341 (1999).

    CAS  Article  Google Scholar 

  25. Ranawat L, Bhatt J, Patel J. Hepatoprotective activity of ethanolic extracts of bark of Zanthoxylum armatum DC in CCl4-induced hepatic damage in rats. J. Ethnopharmacol. 127: 777–780 (2010).

    Article  Google Scholar 

  26. Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB. J. 9: 526–533 (1995).

    CAS  Article  Google Scholar 

  27. Serairi Beji R, Aidi Wannes W, Hamdi A, Tej R, Ksouri R, Saidani Tounsi M, Lachaal M, Karray-Bouraoui N. Antioxidant and hepatoprotective effects of Asparagus albus leaves in carbon tetrachloride-induce liver injury rats. J. Food Biochem. 42: 1–11 (2018).

    Article  Google Scholar 

  28. Taniguchi M, Takeuchi T, Nakatsuka R, Watanabe T, Sato K. Molecular process in acute liver injury and regeneration induced by carbon tetrachloride. Life Sci. 75: 1539–1549 (2004).

    CAS  Article  Google Scholar 

  29. Tanvir EM, Hossen MdS, Hossain MdF, Afroz R, Gan SH, Khalil MdI, Karim N, Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J. Food Qual. 2017: 1–7 (2017).

    Article  Google Scholar 

  30. Thapa BR, Walia A. Liver function tests and their interpretation. Indian J. Pediat. 74: 663–671 (2007).

    CAS  Article  Google Scholar 

  31. Trinidad TP, Sagum RS, De Leon MP, Mallillin AC, Borlagdan MP. Zingiber officinale and Curcuma longa as potential functional foods/ingredients. Food Public Health 2: 1–4 (2012).

    Article  Google Scholar 

  32. Veidal SS, Karsdal MA, Nawrocki A, Larsen MR, Dai Y, Zheng Q, Hägglund P, Vainer B, Skjot-Arkil H, Leeming DJ: Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Repair 4: 2–11 (2011).

    Article  Google Scholar 

  33. Vrba J, Modriansky M. Oxidative burst of Kupffer cells: target for liver injury treatment. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 146: 15–20 (2002).

    CAS  Article  Google Scholar 

  34. Wang JY, Guo JS, Yang CQ: Expression of exogenous rat collagenase in vitro and in a rat model of liver fibrosis. World J. Gastroenterol. 8: 901–907 (2002).

    CAS  Article  Google Scholar 

  35. Weiler-Normann C, Herkel J, Lohse AW. Mouse models of liver fibrosis. Z. Gastroenterol. 45: 43–50 (2007).

    CAS  Article  Google Scholar 

  36. Yang J, Guo J, Yuan J: In vitro antioxidant properties of rutin. LWT Food Sci Technol. 41: 1060–1066 (2008).

    CAS  Article  Google Scholar 

  37. Zheng J, Cheng J, Zheng S, Feng Q, Xiao X. Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front. Pharmacol. 9: 472 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education, Scientific Research and Information and Communication Technologies (LR15CBBC06).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rim Ben Mansour.

Ethics declarations

Conflict of interest

This research received no grant from any funding agency. Authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serairi Beji, R., Ben Mansour, R., Bettaieb Rebey, I. et al. Does Curcuma longa root powder have an effect against CCl4-induced hepatotoxicity in rats: a protective and curative approach. Food Sci Biotechnol 28, 181–189 (2019). https://doi.org/10.1007/s10068-018-0449-3

Download citation

Keywords

  • Curcuma longa root
  • Liver fibrosis
  • Hepatic enzymes
  • Oxidative stress