Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk

A Correction to this article was published on 06 December 2019

This article has been updated

Abstract

Biofilm is a serious issue in the dairy factory due to it increases the opportunity for microbial contamination. Staphylococcus aureus and Pseudomonas aeruginosa are the bacteria capable to construct the biofilm on materials and equipments. Therefore, the bacterial growth and efficiency of sanitizing agents to solve the problems were evaluated. These bacteria grew well in UHT milk when they were cultivated at 37 °C, especially S. aureus. The exponential growth phase and biofilm on stainless steel were discovered by short contact time at 2 h. The mature stage of biofilm cycle was found at 4 h during bacteria growth and it was continuously constructed until 48 h. The 10, 24, and 48 h-old biofilm adhering on stainless steel were established with oxisan and chlorine used as microbial sanitizers. The 4% of sanitizing agents was the efficiency concentration to reduce biofilm on stainless steel up to 82% when these bacteria grew in UHT milk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

  • 06 December 2019

    The article “Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk”, written by “Nutthawut Meesilp and Nutthisha Mesil”.

References

  1. Anand S, Singh D, Avadhanula M, Marka S. Development and control of bacterial biofilms on dairy processing membranes. Compr. Rev. Food Sci. Food Saf. 13(1): 18–33 (2014)

    CAS  Article  Google Scholar 

  2. Balaban N, Rasooly A. Staphylococcal enterotoxins. Int. J. Food Microbiol. 61: 1–10 (2000)

    CAS  Article  Google Scholar 

  3. Barbano DM, Ma Y, Santos MV. Influence of raw milk quality on fluid milk shelf life. J. Dairy Sci. 89: 15–19 (2006)

    Article  Google Scholar 

  4. Beuchat LR, Nail BV, Adler BB, Clavero MRS. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J Food Prot. 61(10): 1305–1311 (1998)

    CAS  Article  Google Scholar 

  5. Biesta-Peters EG, Reij MW, Joosten H, Gorris LGM, Zwietering MH. Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus. Appl. Environ. Microbiol. 76: 1399–1405 (2010)

    CAS  Article  Google Scholar 

  6. Bouman S, Lund DB, Driessen FM, Schmidt DG. Growth of thermoresistant Streptococci and deposition of milk constituents on plates of heat-exchangers during long operating times. J. Food Prot. 45: 806–812 (1982)

    Article  Google Scholar 

  7. Dewangan AK, Patel AD, Bhadania AG. Stainless steel for dairy and food industry: a review. J. Mater. Sci. Eng. 4: 1–4 (2015)

    Google Scholar 

  8. Dufour S, Dohoo IR, Barkema HW, Descôteaux L, Devries TJ, Reyher KK, Roy JP, Scholl DT. Manageable risk factors associated with the lactational incidence, elimination, and prevalence of Staphylococcus aureus intramammary infections in dairy cows. J. Dairy Sci. 95: 1283–1300 (2012)

    CAS  Article  Google Scholar 

  9. Gutiérrez D, Delgado S, Vázquez-Sánchez D, Martínez B, Cabo ML, Rodríguez A, Herrera JJ, García P. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl. Environ. Microbiol. 78: 8547–8554 (2012)

    Article  Google Scholar 

  10. Hallam NB, West JR, Forster CF, Simms J. The potential for biofilm growth in water distribution systems. Water Res. 35(17): 4063–4071 (2001)

    CAS  Article  Google Scholar 

  11. Hennekinne JA, Buyser ML, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36: 815–836 (2012)

    CAS  Article  Google Scholar 

  12. Janknecht P, Melo LF. Online biofilm monitoring. Rev. Environ. Sci. Bio. 2: 269–283 (2003)

    Article  Google Scholar 

  13. Jørgensen HJ, Mork T, Caugant DA, Kearns A, Rorvik LM. Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk. Appl. Environ. Microbiol. 71: 8352–8361 (2005)

    Article  Google Scholar 

  14. Kitis M. Disinfection of wastewater with peracetic acid: a review. Environ. Int. 30(1): 47–55 (2004)

    CAS  Article  Google Scholar 

  15. Kumar CG, Anand SK. Significance of microbial biofilms in food industry. Int. J. Food Microbiol. 42: 9–27 (1998)

    CAS  Article  Google Scholar 

  16. Lund V, Ormerod K. The influence of disinfection processes on biofilm formation in water distribution systems. Water Res. 29: 1013–1021 (1995)

    CAS  Article  Google Scholar 

  17. Marchand S, Block JD, Jonghe VD, Coorevits A, Heyndrickx M, Herman L. Biofilm formation in milk production and processing environments; Influence on milk quality and safety. Compr. Rev. Food Sci. Food Saf. 11: 133–147 (2012)

    CAS  Article  Google Scholar 

  18. Marquis RE, Rutherford GC, Faraci MM, Shin SY. Sporicidal action of peracetic acid and protective eVects of transition metal ions. J. Ind. Microbiol. 15: 486–492 (1995)

    CAS  Article  Google Scholar 

  19. Ndiongue S, Huck PM, Slawson RM. Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Water Res. 39: 953–964 (2005)

    CAS  Article  Google Scholar 

  20. O’Toole GA, Kolter R. The initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol. 28: 449–461 (1998)

    Article  Google Scholar 

  21. Ostyn, A, De Buyser ML, Guillier F, Groult J, Felix B, Salah S, Delmas G, Hennekinne JA. First evidence of a food poisoning outbreak due to staphylococcal enterotoxin type E, France, 2009. Eur Surveill. 15: 1–4 (2010)

    Google Scholar 

  22. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: defining the roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30: 285–293 (1998)

    CAS  Article  Google Scholar 

  23. Rahimi E. Enterotoxigenicity of Staphylococcus aureus isolated from traditional and commercial dairy products marketed in Iran. Braz. J. Microbiol. 44: 393–399 (2013)

    Article  Google Scholar 

  24. Rossoni EMM, Gaylarde CC. Comparison of sodium hypochlorite and peracetic acid as sanitising agents for stainless steel food processing surfaces using epifluorescence microscopy. Int. J. Food Microbiol. 61(1): 81–85 (2000)

    CAS  Article  Google Scholar 

  25. Russell AD. Similarities and diVerences in the responses of microorganisms to biocides. J. Antimicrob. Chemother. 52:750–763 (2003)

    CAS  Article  Google Scholar 

  26. Schmid D, Fretz R, Winter P, Mann M, Höger G, Stöger A, Ruppitsch W, Ladstätter J, MayerN, Martin A, Allerberger F. Outbreak of staphylococcal food intoxication after consumption of pasteurized milk products, June 2007, Austria. Wien Klin Wochenschr. 121: 125–131(2009)

    CAS  Article  Google Scholar 

  27. Scott SA, Brooks JD, Rakonjac J, Walker KMR, Flint SH. The formation of thermophilic spores during the manufacture of whole milk powder. Intl. J. Dairy Technol. 60: 109–117 (2007)

    CAS  Article  Google Scholar 

  28. Shirtliff ME, Mader JT, Camper AK. Molecular interactions in biofilms. Chem. Biol. 9: 859–871 (2002)

    CAS  Article  Google Scholar 

  29. Sommer P, Martin-Rouas C, Mettler E. Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol. 16: 503–515 (1999)

    CAS  Article  Google Scholar 

  30. Valero A, Pe´rez-Rodriguez F, Carrasco E, Fuentes-Alventosa JM, Garcta-Gimeno RM, Zurera G. Modeling the growth boundaries of Staphylococcus aureus: effect of temperature, pH and water activity. Int. J. Food Microbiol. 133: 186–194 (2009)

    CAS  Article  Google Scholar 

  31. Van Houdt R, Michiels CW. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109: 1117–1131 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by senior project 2017 of Applied Biology Department, Faculty of Science and Liberal Art, Rajamangala University of Technology Isan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nutthawut Meesilp.

Additional information

The original version of this article was revised: due to a retrospective Open Access cancellation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meesilp, N., Mesil, N. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Sci Biotechnol 28, 289–296 (2019). https://doi.org/10.1007/s10068-018-0448-4

Download citation

Keywords

  • Biofilm
  • Staphylococcus aureus
  • Pseudomonas aeruginosa
  • Oxisan
  • Chlorine