Disruption of Phaffia rhodozyma cells and preparation of microencapsulated astaxanthin with high water solubility

Abstract

A novel process was developed for encapsulation of astaxanthin from Phaffia rhodozyma. The yeast cells were disrupted by glass beads and the high shearing force partially emulsified the astaxanthin in aqueous phase. The enzymolysis method was then adopted to prepare the yeast extract for a full use of the cells. The gelatin and porous starch were used to microencapsulate the emulsified astaxanthin. Under optimized conditions, the recovery of amino nitrogen and solid reached 3.68 ± 0.32% and 49.22 ± 2.34%, respectively. The microencapsulation conditions were optimized through orthogonal experiment and the encapsulation efficiency, loading astaxanthin, and amino-nitrogen reached 88.56%, 1.55 mg/g, and 1.35 ± 0.14%, respectively. The water solubility of microcapsules reached 81.5 ± 0.35%. Color and storage stability analysis showed that microencapsulation of astaxanthin possessed higher thermal stability. The results demonstrated that the established process was effective and practical.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. An GH, Schuman DB, Johnson EA. Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl. Environ. Microb. 55(1):116–124 (1989)

    CAS  Article  Google Scholar 

  2. Anarjan N, Tan CP, Nehdi IA, Ling TC. Colloidal astaxanthin: Preparation, characterisation and bioavailability evaluation. Food Chem. 135(3):1303–1309 (2012)

    CAS  Article  Google Scholar 

  3. Anderson JS, Sunderland R. Effect of extruder moisture and dryer processing temperature on vitamin C and E and astaxanthin stability. Aquaculture. 207:137–149 (2001)

    Article  Google Scholar 

  4. Bellora N, Moliné M, David-Palma M, Coelho MA, Hittinger CT, Sampaio JP, Libkind D. Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma. BMC Genomics. 17:901 (2016)

    Article  Google Scholar 

  5. Bhatt PC, Ahmad M, Panda BP. Enhanced bioaccumulation of astaxanthin in Phaffia rhodozyma by utilising low-cost agro products as fermentation substrate. Biocatalysis and Agricultural Biotechnology. 2(1):58–63 (2013)

    Article  Google Scholar 

  6. Bie XY, Zhu MJ. Sucrose biotransformation by immobilized Phaffia rhodozyma and continuous neokestose production in a packed-bed reactor. Biocatal. Biotransform. 34(3):89–98 (2016)

    CAS  Article  Google Scholar 

  7. Budarin V, Clark JH, Hardy JJE, Luque R, Milkowski K, Tavener SJ, Wilson AJ. Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. Angew. Chem. 118(23):3866–3870 (2006)

    Article  Google Scholar 

  8. Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C. 146(1–2):60–78 (2007)

    Google Scholar 

  9. Chen X, Chen R, Guo Z, Li C, Li P. The preparation and stability of the inclusion complex of astaxanthin with β-cyclodextrin. Food Chem. 101(4):1580–1584 (2007)

    CAS  Article  Google Scholar 

  10. Chew BP, Mathison BD, Hayek MG, Massimino S, Reinhart GA, Park JS. Dietary astaxanthin enhances immune response in dogs. Vet. Immunol. Immunopathol. 140(3–4):199–206 (2011)

    CAS  Article  Google Scholar 

  11. Choi J, Rahman MM, Lee SY, Chang KH, Lee SM. Effects of dietary inclusion of fermented soybean meal with Phaffia rhodozyma on growth, muscle pigmentation, and antioxidant activity of juvenile rainbow trout (Oncorhynchus mykiss). Turk. J. Fish. Aquat Sci. 16(1):091–101 (2016)

    Article  Google Scholar 

  12. Comunian TA, Thomazini M, Alves AJG, de Matos Junior FE, de Carvalho Balieiro JC, Favaro-Trindade CS. Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Res. Int. 52(1):373–379 (2013)

    CAS  Article  Google Scholar 

  13. Evi VO, Balan B, Ak-Cvitanovi AB, Levi S, Trifkovi K. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng. Rev. 7:452–490 (2015)

    Article  Google Scholar 

  14. Fang TJ, Wang J. Extractability of astaxanthin in a mixed culture of a carotenoid over-producing mutant of Xanthophyllomyces dendrorhous and Bacillus circulans in two-stage batch fermentation. Process Biochem. 37(11):1235–1245 (2002)

    CAS  Article  Google Scholar 

  15. Fonseca RAS, Rafael RS, Kalil SJ, Burkert CAV, Burkert JFM. Different cell disruption methods for astaxanthin recovery by Phaffia rhodozyma. Afr. J. Biotechnol. 10(7):1165–1171 (2011)

    Google Scholar 

  16. Gomez-Estaca J, Comunian TA, Montero P, Ferro-Furtado R, Favaro-Trindade CS. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocolloid. 61:155–162 (2016)

    CAS  Article  Google Scholar 

  17. Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21(5):210–216 (2003)

    CAS  Article  Google Scholar 

  18. Jafari SM, He Y, Bhandari B. Encapsulation of nanoparticles of d-limonene by spray drying: role of emulsifiers and emulsifying techniques. Drying Technol. 25(6):1069–1079 (2007)

    CAS  Article  Google Scholar 

  19. Jiang GL, Zhou LY, Wang YT, Zhu MJ. Astaxanthin from Jerusalem artichoke: Production by fed-batch fermentation using Phaffia rhodozyma and application in cosmetics. Process Biochem. 63:16–25 (2017)

    CAS  Article  Google Scholar 

  20. Lee S, Fang TJ. Simultaneous extraction of carotenoids and transfructosylating enzyme from Xanthophyllomyces dendrorhous by a bead beater. Biotechnol. Lett. 33(1):109–112 (2011)

    CAS  Article  Google Scholar 

  21. Leite MF, De Lima A, Massuyama MM, Otton R. In vivo astaxanthin treatment partially prevents antioxidant alterations in dental pulp from alloxan-induced diabetic rats. Int. Endod. J. 43(11):959–967 (2010)

    CAS  Article  Google Scholar 

  22. Li RW, Cai ZW, Li ZW, Zhang Q, Zhang SY. Synthesis of in situ formable hydrogels with collagen and hyaluronan through facile michael addition. Mat. Sci. Eng. C. 77:1035–1043 (2017)

    CAS  Article  Google Scholar 

  23. Liu XJ, Luo QX, Cao Y, Goulette T, Liu X, Xiao H. Mechanism of Different Stereoisomeric Astaxanthin in Resistance to Oxidative Stress in Caenorhabditis elegans. J. Food Sci. 81(9):H2280–H2287 (2016)

    CAS  Article  Google Scholar 

  24. Mata-Gómez LC, Monta Ez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Microbial Cell Factories. 13:12 (2014)

    Article  Google Scholar 

  25. Michelon M, de Borba TDM, da Silva Rafael R, Burkert CAV, de Medeiros Burkert JF. Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Sci. Biotechnol. 21(1):1–8 (2012)

    CAS  Article  Google Scholar 

  26. Najafi N, Hosseini R, Ahmadi AR. The effect of gamma irradiation on astaxanthin synthetase encoding gene in two mutant strains of Phaffia rhodozyma. Iran J. Microbiol. 5(3):293–298 (2013)

    PubMed  PubMed Central  Google Scholar 

  27. Park KM, Song MW, Lee JH. Production of carotenoids by β-ionone-resistant mutant of Xanthophyllomyces dendrorhous using various carbon sources. Biotechnol. Bioproc. E. 13(2):197–203 (2008)

    CAS  Article  Google Scholar 

  28. Ricci-Silva ME, Vitolo M, O-Neto JA. Protein and glucose 6-phosphate dehydrogenase releasing from baker’s yeast cells disrupted by a vertical bead mill. Process Biochem. 35:831–835 (2000)

    CAS  Article  Google Scholar 

  29. Shen Q, Quek SY. Microencapsulation of astaxanthin with blends of milk protein and fiber by spray drying. J. Food Eng. 123:165–171 (2014)

    CAS  Article  Google Scholar 

  30. Sila A, Ghlissi Z, Kamoun Z, Makni M, Nasri M. Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. Eur. J. Nutr. 54:301–307 (2015)

    CAS  Article  Google Scholar 

  31. Varankovich N, Martinez MF, Nickerson MT, Korber DR. Survival of probiotics in pea protein-alginate microcapsules with or without chitosan coating during storage and in a simulated gastrointestinal environment. Food Sci. Biotechnol. 26(1):189–194 (2017)

    CAS  Article  Google Scholar 

  32. Villalobos-Castillejos F, Cerezal-Mezquita P, Hernández-De Jesús ML, Barragán-Huerta BE. Production and stability of water-dispersible astaxanthin oleoresin from Phaffia rhodozyma. Int. J. Food Sci. Tech. 48(6):1243–1251 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This article was financially supported by the State Key Laboratory of Pulp and Paper Engineering [Grant No. 2017TS06], National Natural Science Foundation of China [Grant No. 51478190], and Guangzhou Science and Technology Program [Grant No. 2014 Y2 -00515].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ming-Jun Zhu.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, J., Ni, H. et al. Disruption of Phaffia rhodozyma cells and preparation of microencapsulated astaxanthin with high water solubility. Food Sci Biotechnol 28, 111–120 (2019). https://doi.org/10.1007/s10068-018-0443-9

Download citation

Keywords

  • Disruption
  • Bead milling
  • Astaxanthin microencapsulation
  • Porous starch
  • Gelatin