Antidiabetic effect of an extract of nutricultured Brassica napus containing vanadium from a Jeju water concentrate

Abstract

The purpose of this study was to determine the antidiabetic effect of an extract of nutricultured Brassica napus containing vanadium (BECV). The BECV was prepared following nutriculture of B. napus with a Jeju water vanadium concentrate for 7 day. The BECV was administered to db/db mice for 8 weeks at different dosages (0.028, 0.14, and 0.7 μg/kg; as vanadium concentration in BECV). After 8 weeks, the BECV results showed mouse blood glucose concentrations to significantly decrease, in a dose-dependent manner, compared with the results for control mice. In addition, the concentrations of triglyceride, total cholesterol, and glycated hemoglobin were significantly lower after 8 weeks of administration of 0.7 μg/kg BECV. Therefore, the BECV may have protective effects against type 2 diabetes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Ashiq U, Jamal RA, Mahroof-Tahir M, Maqsood ZT, Khan KM, Omer I, Choudhary MI. Enzyme inhibition, radical scavenging, and spectroscopic studies of vanadium(IV)-hydrazide complexes. J. Enzym. Inh. Med. Chem. 24: 1336–1343 (2009)

    CAS  Article  Google Scholar 

  2. Bendayan M, Gingras D. Effects of vanadate administration on blood glucose and insulin levels as well as on the exocrine pancreatic function in streptozotocindiabetic rats. Diabetologia. 32: 561–567 (1989)

    CAS  Article  Google Scholar 

  3. Bhuiyan MS, Fukunaga K. Cardioprotection by vanadium compounds targeting Akt-mediated signaling. J Pharmacol Sci. 110: 1–13 (2009)

    CAS  Article  Google Scholar 

  4. Bollen M, Miralpeix M, Ventura F, Toth B, Bartrons R, Stalmans W. Oral administration of vanadate to streptozotocin-diabetic rats restores the glucose-induced activation of liver glycogen synthase. Biochem. J. 267: 269–271 (1990)

    CAS  Article  Google Scholar 

  5. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 14: 575–585 (2011)

    CAS  Article  Google Scholar 

  6. Brichard SM, Bailey CJ, Henquin JC. Marked improvement of glucose homeostasis in diabetic ob/ob mice given oral vanadate. Diabetes. 39: 1326–1332 (1990)

    CAS  Article  Google Scholar 

  7. Brichard SM, Lederer J, Henquin JC. The insulin-like properties of vanadium: A curiosity or a perspective for the treatment of diabetes? Diabete Metab. 17: 435–440 (1991)

    CAS  PubMed  Google Scholar 

  8. Brichard SM, Pottier AM, Henquin JC. Long term improvement of glucose homeostasis by vanadate in obese hyperinsulinemic fa/fa rats. Endocrinology. 125: 2510–2516 (1989)

    CAS  Article  Google Scholar 

  9. Domingo JL, Gomez M, Sanchez DJ, Llobet JM, Keen CL. Toxicology of vanadium compounds in diabetic rats: The action of chelating agents on vanadium accumulation. Mol. Cell. Biochem. 153: 233–240 (1995)

    CAS  Article  Google Scholar 

  10. Eledrisi MS, Alshanti MS, Shah MF, Brolosy B, Jaha N. Overview of the diagnosis and management of diabetic ketoacidosis. Afr J Med Sci. 331: 243–251 (2006)

    Article  Google Scholar 

  11. Florkowski C. HbA1c as a diagnostic test for diabetes mellitus-reviewing the evidence. Clin Biochem Rev. 34: 75–83 (2013)

    PubMed  PubMed Central  Google Scholar 

  12. Ghosh S, Suryawanshi SA. Effect of vinca rosea extracts in treatment of alloxan diabetes in male albino rats. Indian J. Ex. Biol. 39: 748–758 (2001)

    CAS  Google Scholar 

  13. Greer JJ, Ware DP, Lefer DJ. Myocardial infarction and heart failure in the db/db diabetic mouse. Am. J. Physiol Heart Circ Physiol. 290: H146–H153 (2006)

    CAS  Article  Google Scholar 

  14. Heyliger CE, Tahiliani AG, McNeill JH. Effect of vanadate on elevated glucose and depressed cardiac performance of diabetic rats. Science. 227: 1474–1477 (1985)

    CAS  Article  Google Scholar 

  15. Hwang SL, Chang HW. Natural vanadium-containing Jeju ground water stimulates glucose uptake through the activation of AMP-activated protein kinase in L6 myotubes. Mol. Cell. Biochem. 360: 401–409 (2012)

    CAS  Article  Google Scholar 

  16. McNeill JH, Yuen VG, Hoveyda HR, Orvig C. Bis(maltolato)-oxovanadium (IV) is a potent insulin mimic. Med. Chem. 35: 1489–1491 (1992)

    CAS  Article  Google Scholar 

  17. Meyerovitch I, Farfel Z, Sack J, Shechter Y. Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. J. Biol. Chem. 262: 6658–6662 (1987)

    CAS  PubMed  Google Scholar 

  18. Meyerovitch J, Rothenberg P, Shechter Y, Bonner-Weir S, Kahn CR. Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J. Clin. Invest. 87: 1286–1294 (1991)

    CAS  Article  Google Scholar 

  19. Nyane NA, Tlaila TB, Malefane TG, Ndwandwe DE. Owira PO. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. Eur. J. Pharmacol. 803: 103–111 (2017)

    Article  Google Scholar 

  20. Park SJ, Youn CK, Hyun JW, You HJ. The anti-obesity effect of natural vanadium-containing Jeju ground water. Biol. Trace. Elem. Res. 151: 294–300 (2013)

    CAS  Article  Google Scholar 

  21. Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. 2: 320–330 (2012)

    CAS  Article  Google Scholar 

  22. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JB, Hall DA, Lum BS, Shaver A. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269: 4596–4604 (1994)

    CAS  PubMed  Google Scholar 

  23. Poucheret P, Verma S, Grynpas MD, McNeill JH. Vanadium and diabetes. Mol. Cell. Biochem. 188: 73–80 (1998)

    CAS  Article  Google Scholar 

  24. Pugazhenthi S, Angel JF, Khandelwal RL. Long-term effects of vanadate treatment on glycogen metabolizing and lipogenic enzymes of liver in genetically diabetic (db/db) mice. Metabolism. 40: 941–946 (1991)

    CAS  Article  Google Scholar 

  25. Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res. Clinl. Practice. 62: 139–148 (2003)

    Article  Google Scholar 

  26. Ramanadham S, Mongold JJ, Brownsey RW, Cros GH, McNeill JH. Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am. J. Physiol. 257: H904–H911 (1989)

    CAS  PubMed  Google Scholar 

  27. Rao BK, Kesavulu MM, Apparao C. Antihyperglycemic activity of Momordica cymbalaria in alloxan diabetic rats. J. Ethnopharmacol. 78: 67–71 (2001)

    CAS  Article  Google Scholar 

  28. Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM. Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Brit. J. Pharmacol. 126: 4674–4677 (1999)

    Article  Google Scholar 

  29. Sakurai H, Tsuchiya K, Nukatsuka M, Sofue M,- Kawada J. Insulin-like effects of vanadyl ion in streptozotocin-induced diabetic rats. J. Endocrinol. 126: 451–459 (1990)

    CAS  Article  Google Scholar 

  30. Sekar N, Kanthasamy A, William S, Balasubramaniya N, Govindasamy S. Antioxidant effect of vanadate on experimental diabetic rats. Acta Diabetol. Lat. 27: 285–293 (1990)

    CAS  Article  Google Scholar 

  31. Sekar N, Kanthasamy A, William S, Subramanian S, Govindasamy S. Insulin actions of vanadate in diabetic rats. Pharmacol. Res. 22: 207–217 (1989)

    Article  Google Scholar 

  32. Shisheva A, Ikonomov O, Shechter Y. The protein tyrosine phosphatase inhibitor, pervanadate, is a powerful antidiabetic agent in streptozotocin-treated diabetic rats. Endocrinology. 134: 507–510 (1994)

    CAS  Article  Google Scholar 

  33. Srivastava AK. Section Review-Oncologic, Endocrine & Metabolic:Potential use of vanadium compounds in the treatment of diabetes mellitus. Expert Opin. Investig. Drugs. 4: 525–536 (1995)

    CAS  Article  Google Scholar 

  34. Strout HV, Vicario PP, Biswas C, Superstein R, Brady EJ, Pilch PF, Berger J. Vanadate treatment of streptozotocin diabetic rats restores expression of the insulin responsive glucose transporter in skeletal muscle. Endocrinology. 126: 2728–2732 (1990)

    CAS  Article  Google Scholar 

  35. Vigneri R, Goldfine, ID. Role of metformin in treatment of diabetes mellitus. Diabetes Care. 10: 118–122 (1987)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) and Jeju Institute for Regional Program Evaluation (GWIRPE) through the Leading Industry Development for Economic Region [No. R0000359].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ju-Hyun Cho.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yun, J., Park, S., Choi, G. et al. Antidiabetic effect of an extract of nutricultured Brassica napus containing vanadium from a Jeju water concentrate. Food Sci Biotechnol 28, 209–214 (2019). https://doi.org/10.1007/s10068-018-0436-8

Download citation

Keywords

  • Vanadium
  • Brassica napus extract
  • Antidiabetic effect
  • db/db mouse