Skip to main content
Log in

Antimicrobial activities of leptospermone isolated from Leptospermum scoparium seeds and structure–activity relationships of its derivatives against foodborne bacteria

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was carried out to determine the antimicrobial activities of leptospermone isolated from Leptospermum scoparium and its derivatives against six foodborne bacteria (Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus intermedius and Staphylococcus aureus), with a view to developing safer antimicrobial agents. The essential oil of L. scoparium seeds possessed potent antimicrobial activity against six bacterial strains. The antimicrobial compound of L. scoparium was isolated by chromatographic analyses and identified as leptospermone. To investigate the structure–activity relationships, the antimicrobial activities of leptospermone and its derivatives (2-acetyl-1,3-cyclohexanedione, 1,3-cyclohexanedione, 1,2,3-cyclohexanetrione-1,3-dioxime, 5,5-dimethyl-1,3-cyclohexanedione and 2,2,4,4,6,6-hexamethyl-1,3,5-cyclohexanetrione) were examined against six foodborne bacteria. Based on the MIC values, leptospermone (MIC 23.6–69.7 μg/mL), 1,2,3-cyclohexanetrione-1,3-dioxime (MIC 43.9–88.5 μg/mL) and 2,2,4,4,6,6-hexamethyl-1,3,5-cyclohexanetrione (MIC 43.9–88.5 μg/mL) exhibited antimicrobial activities against the six foodborne bacteria. These results indicated that leptospermone and its derivatives could potentially be developed as natural food preservatives, rather than using hazardous synthetic preservatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez Costa A, Naspi CV, Lucia A, Masuh HM. Repellent and larvicidal activity of the essential oil from Eucalyptus nitens against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 54: 670–676 (2017)

    Article  PubMed  Google Scholar 

  • Bhargava K, Conti DS, da Rocha SR, Zhang Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 47: 69–73 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Cho M, Ko SB, Kim JM, Lee OH, Lee DW, Kim JY. Influence of extraction conditions on antioxidant activities and catechin content from bark of Ulmus pumila L. Appl. Biol. Chem. 59: 329–336 (2016)

    Article  CAS  Google Scholar 

  • Christoph F, Kaulfers PM, Stahl-Biskup E. A comparative study of the in vitro antimicrobial activity of tea tree oils with special reference to the activity of β-triketones. Planta Med. 66: 556–560 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Douglas MH, van Klink JW, Smallfield BM, Perry NB, Anderson RE, Johnstone P, Weavers RT. Essential oils from New Zealand Manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65: 1255–1264 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food control 46: 412–429 (2014)

    Article  CAS  Google Scholar 

  • Hellyer RO. The occurrence of β-triketones in the steam-volatile oils of some myrtaceous Australian plants. Aust. J. Chem. 21: 2825–2828 (1968)

    Article  CAS  Google Scholar 

  • Henriques AF, Jenkins RE, Burton NF, Cooper RA. The intracellular effects of Manuka honey on Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 29: 45–50 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Kashman Y, Rotstein A, Lifshitz A. The structure determination of two new acylphloroglucinols from Myrtus communis L. Tetrahedron 30: 991–997 (1974)

    Article  CAS  Google Scholar 

  • Kim HJ, Koo M, Hwang D, Choi JH, Kim SM, Oh SW. Contamination patterns and molecular typing of Bacillus cereus in fresh-cut vegetable salad processing. Appl. Biol. Chem. 59: 573–577 (2016)

    Article  CAS  Google Scholar 

  • Kim MG, Lee HS. Insecticidal toxicities of naphthoquinone and its structural derivatives. Appl. Biol. Chem. 59: 3–8 (2016)

    Article  CAS  Google Scholar 

  • Law JWF, Ab Mutalib MS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5: 770 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Lis-Balchin M, Hart SL, Deans SG. Pharmacological and antimicrobial studies on different tea-tree oils (Melaleuca alternifolia, Leptospermum scoparium or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytother. Res. 14: 623–629 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Perry NB, Brennan NJ, Van Klink JW, Harris W, Douglas MH, McGimpsey JA, Smallfield BM, Anderson RE. Essential oils from New Zealand Manuka and Kanuka: chemotaxonomy of Leptospermum. Phytochemistry 44: 1485–1494 (1997)

    Article  CAS  Google Scholar 

  • Porter NG, Wilkins AL. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry 50: 407–415 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Reichling J, Koch C, Stahl-Biskup E, Sojka C, Schnitzler P. Virucidal activity of a β-triketone-rich essential oil of Leptospermum scoparium (Manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med. 71: 1123–1127 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Sanyacharernkul S, Nantapap S, Sangrueng K, Nuntasaen N, Pompimon W, Meepowpan P. Antifungal of modified neolignans from Mitrephora wangii Hu. Appl. Biol. Chem. 59: 385–389 (2016)

    Article  CAS  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Griffin PM. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 17: 7–15 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan B, Cai YZ, Brooks JD, Corke H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 55: 5484–5490 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Smith-Palmer A, Stewart J, Fyfe L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 26: 118–122 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Song CY, Nam EH, Park SH, Hwang CY. In vitro efficacy of the essential oil from Leptospermum scoparium (Manuka) on antimicrobial susceptibility and biofilm formation in Staphylococcus pseudintermedius isolates from dogs. Vet. Dermatol. 24: 404-e87 (2013)

    Article  Google Scholar 

  • van Klink JW, Brophy JJ, Perry NB, Weavers RT. β-Triketones from Myrtaceae: Isoleptospermone from Leptospermum scoparium and papuanone from Corymbia dallachiana. J. Nat. Prod. 62: 487–489 (1999)

    Article  PubMed  Google Scholar 

  • van Klink JW, Larsen L, Perry NB, Weavers RT, Cook GM, Bremer PJ, Kirikae T. Triketones active against antibiotic-resistant bacteria: synthesis, structure-activity relationships, and mode of action. Bioorg. Med. Chem. 13: 6651–6662 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Wilcock A, Pun M, Khanona J, Aung M. Consumer attitudes, knowledge and behavior: a review of food safety issues. Trends Food Sci. Technol. 15: 56–66 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2016R1A2A2A05918651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi-Seon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, EY., Lee, MJ. & Lee, HS. Antimicrobial activities of leptospermone isolated from Leptospermum scoparium seeds and structure–activity relationships of its derivatives against foodborne bacteria. Food Sci Biotechnol 27, 1541–1547 (2018). https://doi.org/10.1007/s10068-018-0391-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0391-4

Keywords

Navigation