Skip to main content

Advertisement

Log in

Hypoglycemic and hypolipidemic effects of samnamul (shoot of Aruncus dioicus var. kamtschaticus Hara) in mice fed a high-fat/high-sucrose diet

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The hypoglycemic and hypolipidemic effects of samnamul were investigated. The α-glucosidase inhibitory activity of samnamul in vivo was determined in normal mice. Oral administration of samnamul extract (500 mg/kg) or acarbose (50 mg/kg) significantly reduced the postprandial glucose response. The effects of chronic consumption of samnamul on fasting hyperglycemia and dyslipidemia were determined in C57BL/6 J mice with diabetes mellitus induced by a high-fat/high-sucrose (HFHS) diet. Consumption of samnamul extract at 0.5% of the diet for 12 weeks decreased serum glucose, triglyceride, and cholesterol levels, the homeostasis model assessment for insulin resistance index, and activities of maltase and sucrase in the small intestine. These results suggest that samnamul had hypoglycemic and hypolipidemic effects in an animal model of type 2 diabetes and that the hypoglycemic effect occurred partly via the inhibition of α-glucosidase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn HC, Kim JH, Kim JI, Auh JH, Choe EO. In vitro α-glucosidase and pancreatic lipase inhibitory activities and antioxidants of samnamul (Aruncus dioicus) during rehydration and cooking. Food Sci. Biotechnol. 23: 1287–1293 (2014)

    Article  CAS  Google Scholar 

  • Aleidi S, Issa A, Bustanji H, Khalil M, Bustanji Y. Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi Pharm. J. 23: 250–256 (2015)

    Article  PubMed  Google Scholar 

  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 28(suppl 1): s37–42 (2005)

    Article  Google Scholar 

  • American Diabetes Association. Standards of medical care in diabetes-2017 abridged for primary care providers. Clin. Diabetes. 35: 5–26 (2017)

    Article  PubMed Central  Google Scholar 

  • Carrascosa JM, Molero JC, Fermín Y, Martínez C, Andrés A, Satrústegui J. Effects of chronic treatment with acarbose on glucose and lipid metabolism in obese diabetic Wistar rats. Diabetes Obes. Metab. 3: 240–248 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A, Bortolotti N, Falleti E, Taboga C, Tonutti L, Crescentini A, Motz E, Lizzio S, Russo A, Bartoli E. Total radical-trapping antioxidant parameter in NIDDM patients. Diabetes Care. 20: 194–197 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A, Taboga C, Tonutti L, Giacomello R, Stel L, Motz E, Pirisi M. Post-meal coagulation activation in diabetes mellitus: the effect of acarbose. Diabetologia. 39: 469–473 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 290: 486–494 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Choi HN, Kang MJ, Lee SJ, Kim JI. Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet. Nutr. Res. Pract. 8: 544–549 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlqvist A. Assay of intestinal disaccharidases. Scand. J. Clin. Lab. Invest. 44: 169–172 (1984)

    Article  CAS  PubMed  Google Scholar 

  • Deguchi Y, Miyazaki K. Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract. Nutr. Metab. (Lond) 7: 9 (2010)

    Article  CAS  Google Scholar 

  • Fujita H, Yamagami T. Fermented soybean-derived Touchi-extract with anti-diabetic effect via alpha-glucosidase inhibitory action in a long-term administration study with KKAy mice. Life Sci. 70: 219–227 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114: 1752–1761 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haffner SM; American Diabetes Association. Dyslipidemia management in adults with diabetes. Diabetes Care. 27(suppl 1): s68–s71 (2004)

    Google Scholar 

  • Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care. 20: 1087–1092 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 104: 2673–2678 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Higdon JV, Frei B. Obesity and oxidative stress: a direct link to CVD? Arterioscl. Throm. Vas. Biol. 23: 365–367 (2003)

    Article  CAS  Google Scholar 

  • Kang SJ, Park JHY, Choi HN, Kim JI. α-glucosidase inhibitory activities of myricetin in animal models of diabetes mellitus. Food Sci. Biotechnol. 24: 1897–1900 (2015)

    Article  CAS  Google Scholar 

  • Kim JG, Jo SH, Ha KS, Kim SC, Kim YC, Apostolidis E, Kwon YI. Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC. Complement. Altern. Med. 14: 272 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn. Rev. 5: 19–29 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AY, Kang MJ, Choe E, Kim JI. Hypoglycemic and antioxidant effects of daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus. Nutr. Res. Pract. 9: 262–267 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Yu YL, Yang JS, Li Y, Liu YW, Liang Y, Liu XD, Xie L, Wang GJ. Berberine suppresses intestinal disaccharidases with beneficial metabolic effects in diabetic states, evidences from in vivo and in vitro study. Naunyn Schmiedebergs Arch. Pharmacol. 381: 371–381 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Lorenzati B, Zucco C, Miglietta S, Lamberti F, Bruno G. Oral hypoglycemic drugs: Pathophysiological basis of their mechanism of action. Pharmaceuticals (Basel). 3: 3005–3020 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  PubMed  Google Scholar 

  • Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int. J. Hypertens. 2013: 653789 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ministry of Food and Drug Safety. Available from: http://www.foodsafetykorea.go.kr/portal/healthyfoodlife/functionalityView02.do?=2658&=MENU_NEW01&=http%3A%2F%2Fwww.foodsafetykorea.go.kr%3A80%2Fportal%2Fhealthyfoodlife%2Ffunctionality.do%3Fmenu_grp%3DMENU_NEW01%26menu_no%3D2658&=&=&=0 Accessed Apr. 07, 2018.

  • Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab. 5: 150–159 (2009)

    CAS  PubMed  Google Scholar 

  • Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J. Basic Clin. Physiol. Pharmacol. 26:165–170 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Olthof MR, Hollman PC, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 131: 66–71 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Raabo E, Terkildsen TC. On the enzymatic determination of blood glucose. Scand. J. Clin. Lab. Invest. 12: 402–407 (1960)

    Article  CAS  PubMed  Google Scholar 

  • Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H. Diabetes dyslipidemia. Diabetes Ther. 7: 203–219 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng T, Yang K. Adiponectin and its association with insulin resistance and type 2 diabetes. J Genet. Genomics. 35: 321–326 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Shin JW, Lee SI, Woo MH, Kim SD. Effect of ethanol extracts of Goat’s beard on streptozotocin induced diabetic symptoms and oxidative stress in rats. J. East Asian Soc. Dietary Life. 18: 939–948 (2008)

    Google Scholar 

  • Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6 J mice. Diabetes. 37: 1163–1167 (1988)

    Article  CAS  PubMed  Google Scholar 

  • Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 46: 733–749 (2003)

    Article  PubMed  Google Scholar 

  • The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329: 977–986 (1993)

    Article  Google Scholar 

  • Vo QH, Nguyen PH, Zhao BT, Thi YN, Nguyen DH, Kim WI, Seo UM, Min BS, Woo MH. Bioactive constituents from the n-butanolic fraction of Aruncus dioicus var. kamtschaticus. Nat. Prod. Sci. 20: 274–280 (2014)

    CAS  Google Scholar 

  • Wang H, Liu T, Huang D. Starch hydrolase inhibitors from edible plants. Adv. Food Nutr. Res. 70: 103–136 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Miyahara H, Takeo J, Katayama M. Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol. Metab. Syndr. 4: 32 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2016 Inje University research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-In Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JI., Yun, JA., Jeong, YK. et al. Hypoglycemic and hypolipidemic effects of samnamul (shoot of Aruncus dioicus var. kamtschaticus Hara) in mice fed a high-fat/high-sucrose diet. Food Sci Biotechnol 27, 1467–1473 (2018). https://doi.org/10.1007/s10068-018-0390-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0390-5

Keywords

Navigation