Skip to main content
Log in

Effects of homogenization on the molecular flexibility and emulsifying properties of soy protein isolate

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The sensitivity of soy protein isolate (SPI) to trypsin was characterized by its flexibility. The effects of different homogenization conditions on soy protein isolate flexibility and emulsifying properties were investigated. Set the homogenization pressure was 120 MPa (megapascal) and the homogenous number of times is 0–4 times, the flexibility increases with the increase of the homogenization times (0–3 times), the change trend of flexibility is not obvious (3–4 times). When the homogenization times was 0–3 times, the emulsifying activity increases, and the emulsifying activity was the strongest at 3 times, after homogenization 3 times, the change trend of emulsifying activity is not obvious, the trend of emulsification stability and emulsification activity were similar. The surface hydrophobicity increases with the increase of homogenization times, while the turbidity decreases. The other structural indicators such as Ultraviolet scanning and endogenous tryptophan fluorescence spectroscopy suggest that the structure of SPI becomes more stretch as the flexibility increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedman M, Brandon D L. Nutritional and health benefits of soy proteins[J]. Journal of Agricultural & Food Chemistry, 2001, 49(3):1069–1086.

    Article  CAS  Google Scholar 

  2. Ma L, Li B, Han F, Yan S, Wang L, Sun J. Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk.[J]. Food Chemistry, 2015, 173:694–701.

    Article  CAS  PubMed  Google Scholar 

  3. Nishinari K, Fang Y, Guo S, Phillips G O. Soy proteins: A review on composition, aggregation and emulsification[J]. Food Hydrocolloids, 2014, 39(2):301–318.

    Article  CAS  Google Scholar 

  4. Kato A, Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J]. Biochim Biophys Acta. 1980, 624(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  5. Damodaran S. Protein Stabilization of Emulsions and Foams[J]. Journal of Food Science, 2010, 70(3):R54–R66.

    Article  Google Scholar 

  6. Shimizu M, Takahashi T, Kaminogawa S, Yamauchi K. Adsorption onto an oil surface and emulsifying properties of bovine. alpha.s1-casein in relation to its molecular structure[J]. J.agric.food Chem, 1983, 31(6):1214–1218.

    Article  CAS  Google Scholar 

  7. Townsend A A, Nakai S. Relationships between hydrophobicity and foaming characteristics of food proteins.[J]. Journal of Food Science, 2010, 48(2):588–594.

    Article  Google Scholar 

  8. Kato A, Komatsu K, Fujimoto K, Kobayashi K. Relationship between surface functional properties and flexibility of proteins detected by the protease susceptibility[J]. Journal of Agricultural & Food Chemistry, 1985, 33(33):931–934.

    Article  CAS  Google Scholar 

  9. Tang C H, Shen L. Role of Conformational Flexibility in the Emulsifying Properties of Bovine Serum Albumin[J]. Journal of Agricultural & Food Chemistry, 2013, 61(12):3097–3110.

    Article  CAS  Google Scholar 

  10. Cui, Z., Chen, Y., Kong, X., Zhang, C., and Hua, Y. (2014). Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: Effects of heating concentration, homogenizer rotating speed, and salt addition level. Journal of Agricultural and Food Chemistry, 62:1634–1642.

    Article  CAS  PubMed  Google Scholar 

  11. Li, F., Kong, X., Zhang, C., and Hua, Y. (2011). Effect of heat treatment on the properties of soy protein-stabilised emulsions. International Journal of Food Science and Technology, 46:1554–1560.

    Article  CAS  Google Scholar 

  12. Liang, H. N., and Tang, C. H. (2013). Emulsifying and interfacial properties of vicilins: Role of conformational flexibility at quaternary and/or tertiary levels. Journal of Agricultural and Food Chemistry, 61:11140–11150.

    Article  CAS  PubMed  Google Scholar 

  13. Liang, H. N., and Tang, C. H. (2014). Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0. LWT-Food Science and Technology, 58:463–469.

    Article  CAS  Google Scholar 

  14. Tang C H, Shen L. Dynamic adsorption and dilatational properties of BSA at oil/water interface: Role of conformational flexibility[J]. Food Hydrocolloids, 2015, 43:388–399.

    Article  CAS  Google Scholar 

  15. Floury J, Desrumaux A, Lardières J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions[J]. Innovative Food Science & Emerging Technologies, 2000, 1(2):127–134.

    Article  CAS  Google Scholar 

  16. Weiss J, Takhistov P, Mcclements J. Functional Materials in Food Nanotechnology[J]. Journal of Food Science, 2006, 71(9):R107–R116.

    Article  CAS  Google Scholar 

  17. Puppo M C, Speroni F, Chapleau N, De Lamballerie M, Anon M C, Anton M. Effect of high-pressure treatment on emulsifying properties of soybean proteins.[J]. Food Hydrocolloids, 2005, 19(2):289–296.

    Article  CAS  Google Scholar 

  18. Bouaouina H, Desrumaux A, Loisel C, Legrand J. Functional properties of whey proteins as affected by dynamic high-pressure treatment[J]. International Dairy Journal, 2006, 16(4):275–284.

    Article  CAS  Google Scholar 

  19. Sorgentini D A, Wagner J R. Comparative study of structural characteristics and thermal behavior of whey and isolate soybean proteins.[J]. Journal of Food Biochemistry, 2010, 23(5):489–507.

    Article  Google Scholar 

  20. Hayakawa S, Nakai S. Relationships of hydrophobicity and net Charge to the solubility of milk and soy proteins[J]. Journal of Food Science, 1985, 50(2):486–491.

    Article  CAS  Google Scholar 

  21. Liang H N, Tang C H. Emulsifying and Interfacial Properties of Vicilins: Role of Conformational Flexibility at Quaternary and/or Tertiary Levels[J]. Journal of Agricultural & Food Chemistry, 2013, 61(46):11140–11150.

    Article  CAS  Google Scholar 

  22. Liu Y, Zhao G, Zhao M, Ren J, Yang B. Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction[J]. Food Chemistry, 2012, 131(3):901–906.

    Article  CAS  Google Scholar 

  23. Tang S, Hettiarachchy N S, Horax R, Eswaranandam S. Physicochemical Properties and Functionality of Rice Bran Protein Hydrolyzate Prepared from Heat-stabilized Defatted Rice Bran with the Aid of Enzymes[J]. Journal of Food Science, 2006, 68(1):152–157.

    Article  Google Scholar 

  24. Puppo C, Chapleau N, Speroni F, de Lamballerie-Anton M, Michel F, Añón C, Anton M. Physicochemical modifications of high-pressure-treated soybean protein isolates.[J]. Journal of Agricultural & Food Chemistry, 2004, 52(6):1564.

    Article  CAS  Google Scholar 

  25. Tedford L A, Smith D, Schaschke C J. High-pressure processing effects on the molecular structure of ovalbumin, lysozyme, and â-lactoglobulin. Food Research International, 1999, 32, 101–106.

    Article  CAS  Google Scholar 

  26. Hayakawa I, Linko Y-Y, Linko P. Mechanism of highpressure denaturation of proteins. Lebensmittel-Wissenschaft und-Technologie-Food Science and Technology, 1996, 29, 756–762.

    Article  CAS  Google Scholar 

  27. Tedford L A, Smith D, Schaschke C J. High pressure processing effects on the molecular structure of ovalbumin, lysozyme, and β-lactoglobulin. Food Research International, 1999, 32, 101–106.

    Article  CAS  Google Scholar 

  28. Cromwell M E M, Hilario E, Jacobson F. Protein aggregation and bioprocessing[J]. The Journal of American Association of Pharmaceutical Scientists, 2006, 8(3):E572–E579.

    CAS  Google Scholar 

  29. İbanoǧlu E, Karataş Ş. High pressure effect on foaming behaviour of whey protein isolate[J]. Journal of Food Engineering, 2001, 47(1):31–36.

    Article  Google Scholar 

  30. Fernándezávila C, Escriu R, Trujillo A J. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions.[J]. Food Research International, 2015, 75:357–366.

    Article  CAS  Google Scholar 

  31. Hebishy E, Buffa M, Juan B, Blasco-Moreno, A, Trujillo, A J. Ultra high-pressure homogenized emulsions stabilized by sodium caseinate: Effects of protein concentration and pressure on emulsions structure and stability[J]. LWT - Food Science and Technology, 2017, 76:57–66.

    Article  CAS  Google Scholar 

  32. Wang W, Zhu Y, Chen T, Zhou G. Kinetic and thermodynamic analysis of ultra-high pressure and heat-induced denaturation of bovine serum albumin by surface plasmon resonance[J]. Tropical Journal of Pharmaceutical Research, 2017, 16(8):1965.

    Article  Google Scholar 

  33. Ruso J M, González-Pérez A, Prieto G, Sarmiento F. Study of the interactions between lysozyme and a fully-fluorinated surfactant in aqueous solution at different surfactant-protein ratios[J]. International Journal of Biological Macromolecules, 2003, 33(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X S, Tang C H, Li B S, Yang X Q, Li L, Ma C Y. Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates[J]. Food Hydrocolloids, 2008, 22(4): 560–567.

    Article  CAS  Google Scholar 

  35. Subirade M, Loupil F, Allain A F, Paquin P. Effect of dynamic high pressure on the secondary structure of beta-lactoglobulin and on its conformational properties as determined by Fourier transform infrared spectroscopy.[J]. International Dairy Journal, 1998, 8(2): 738–744.

    Article  Google Scholar 

  36. Kato A, Fujimoto K, Matsudomi N, Kobayashi K. Protein flexibility and functional properties of heat-denatured ovalbumin and lysozyme.[J]. Bioscience Biotechnology & Biochemistry, 1986, 50(2):417–420.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by funds from the National Soybean Industry Technical System Project (CARS-04-PS25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xibo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, G., Wang, X. et al. Effects of homogenization on the molecular flexibility and emulsifying properties of soy protein isolate. Food Sci Biotechnol 27, 1293–1299 (2018). https://doi.org/10.1007/s10068-018-0361-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0361-x

Keywords

Navigation