Food Science and Biotechnology

, Volume 27, Issue 4, pp 1085–1092 | Cite as

Effects of drying methods on contents of bioactive compounds and antioxidant activities of Angelica dahurica

  • Wei-Hong Liang
  • Tung-Wu Chang
  • Yuh-Chyang Charng


Baizhi (Angelica dahurica) has been widely used as a traditional Chinese herbal medicine, functional food and cosmetic product ingredient, mostly because of the high furanocoumarin compounds in roots. Because the fresh root is perishable, drying techniques are needed to maintain a higher-quality product. Freeze-drying is the best method but energy-consuming and costly. The aim of this study was to analyze the quality (antioxidant and furanocoumarin content) of Baizhi roots after freeze-drying (the control) and in-the-shade, 40 and 70 °C drying. Antioxidant activity was revealed by 2,2-diphenyl-1-picrylhydrazyl and Fe2+ chelating assay, and the content of six furanocoumarin compounds, including xanthotoxin, bergapten, oxypeucedanin, imperatorin, phellopterin and isoimperatorin, was analyzed by liquid chromatography. Antioxidant activity was greater in roots with in-the-shade, 40 and 70 °C drying than freeze-drying. The furanocoumarin content pattern was similar with 70 °C drying and freeze-drying. A. dahurica roots dried at 70 °C may be an alternative method for maintaining high quality.


Angelica dahurica Drying method Furanocoumarin Antioxidant 



High-performance liquid chromatography with diode-array detection





We thank Professor Li-yu D Liu and Chen-An Tsai for description of statistic results. This project was supported by the Council of Agriculture and National Science Council, Executive Yuan, Taiwan, Republic of China.


  1. 1.
    Wang NH, Huang LQ, Yang B, Kimie B, Masahiko T, Yuan CQ, Qin HZ, Shu P. Studies on original plant of traditional chinese drug“Bai Zhi” (Radix Angelicae Dahuricae) and its closely related wild plants IV. discussion on original plant and cultivation history of traditional chinese drug“Bai Zhi”and evolution of its closely related wild plants. China J. Chin. Mater. Med. 26: 733–736 (2001)Google Scholar
  2. 2.
    Sarker SD, Nahar L. Natural medicine: The genus Angelica. Curr. Med. Chem. 11: 1479–1500 (2004)CrossRefGoogle Scholar
  3. 3.
    Li B, Zhang X, Wang J, Zhang L, Gao B, Shi S, Wang X, Li J, Tu P. Simultaneous characterisation of fifty coumarins from the roots of Angelica dahurica by off-line two-dimensional high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. Phytochem. Analysis. 25: 229–240 (2014)CrossRefGoogle Scholar
  4. 4.
    Piao XL, Park IH, Baek SH, Kim HY, Park MK, Park JH. Antioxidative activity of furanocoumarins isolated from Angelicae dahuricae. J. Ethnopharmacol. 93: 243–246 (2004)CrossRefGoogle Scholar
  5. 5.
    Pervin M, Hasnat MD, Debnath T, Park SR, Kim DH, Lim BO. Antioxidant, anti‐Inflammatory and antiproliferative activity of Angelica dahurica root extracts. J. Food Biochem. 38: 281–292 (2014)CrossRefGoogle Scholar
  6. 6.
    Yousif AN, Scaman CH, Durance TD, Girard B. Flavor volatiles and physical properties of vacuum-microwave-and air-dried sweet basil (Ocimum basilicum L.). J. Agr. Food Chem. 47: 4777–4781 (1999)CrossRefGoogle Scholar
  7. 7.
    Cho YH, Kim JH, Park SM, Lee BC, Pyo HB, Park HD. New cosmetic agents for skin whitening from Angelica dahurica. J. Cosmet. SCI. 57: 11–22 (2006)Google Scholar
  8. 8.
    Kim YK, Kim YS, Ryu SY. Antiproliferative effect of furanocoumarins from the root of Angelica dahurica on cultured human tumor cell lines. Phytother. Res. 21: 288–290 (2007)CrossRefGoogle Scholar
  9. 9.
    Kwon YS, Kobayashi A, Kajiyama SI, Kawazu K, Kanzaki H, Kim CM. Antimicrobial constituents of Angelica dahurica roots. Phytochemistry. 44: 887–889 (1997)CrossRefGoogle Scholar
  10. 10.
    Marumoto S, Miyazawa M. β-secretase inhibitory effects of furanocoumarins from the root of Angelica dahurica. Phytother. Res. 24: 510–513 (2010)Google Scholar
  11. 11.
    García-Argáez AN, Apan TOR, Delgado HP, Velázquez G, Martínez-Vázquez M. Anti-inflammatory activity of coumarins from Decatropis bicolor on TPA ear mice model. Planta Med. 66: 279–281 (2000)CrossRefGoogle Scholar
  12. 12.
    Luszczki JJ, Glowniak K, Czuczwar SJ. Imperatorin enhances the protective activity of conventional antiepileptic drugs against maximal electroshock-induced seizures in mice. Eur. J. Pharmacol. 574: 133–139 (2007)CrossRefGoogle Scholar
  13. 13.
    Oh H, Lee HS, Kim T, Chai KY, Chung HT, Kwon TO, Jun JY, Jeong OS, Kim YC, Yun YG. Furocoumarins from Angelica dahurica with hepatoprotective activity on tacrine-induced cytotoxicity in Hep G2 cells. Planta Med. 68: 463–464 (2002)CrossRefGoogle Scholar
  14. 14.
    Chiou WF, Huang YL, Chen CF, Chen CC. Vasorelaxing effect of coumarins from Cnidium monnieri on rabbit corpus cavernosum. Planta Med. 67: 282–284 (2001)CrossRefGoogle Scholar
  15. 15.
    Wang C, Wang T, Huang L, Lu W, Zhang J, He H. Synthesis and fluorescent study of 5-phenyl furocoumarin derivatives as vasodilatory agents. Bioorg. Med. Chem. Lett. 26: 640–644 (2016)CrossRefGoogle Scholar
  16. 16.
    Li X, Zeng X, Sun J, Li H, Wu P, Fung KP, Liu F. Imperatorin induces Mcl-1 degradation to cooperatively trigger Bax translocation and Bak activation to suppress drug-resistant human hepatoma. Cancer Lett. 348: 146–155 (2014)CrossRefGoogle Scholar
  17. 17.
    Abad MJ, Heras BDL, Silvan AM, Pascual R, Bermejo P, Rodriguez B, Villar AM. Effects of furocoumarins from Cachrys trifida on some macrophage functions. J. Pharm. Pharmacol. 53: 1163–1168 (2001)CrossRefGoogle Scholar
  18. 18.
    Ryu SY, Kou NY, Choi HS, Ryu H, Kim TS, Kim KM. Cnidicin, a coumarin, from the root of Angelica koreana, inhibits the degranulation of mast cell and the NO generation in RAW 264.7 cells. Planta Med. 67: 172–174 (2001)CrossRefGoogle Scholar
  19. 19.
    Suleimenov EM. Components of Peusedanum morisonii and their antimicrobial and cytotoxic activity. Chem. Nat. Compd. 45: 710 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang GH, Chen CY, Tsai TH, Chen CK, Cheng CY, Huang YH, Hsieh MC, Chung YC. Evaluation of tyrosinase inhibitory and antioxidant activities of Angelica dahurica root extracts for four different probiotic bacteria fermentations. J. Biosci. Bioeng. 123: 679–684 (2017)CrossRefGoogle Scholar
  21. 21.
    Leopold JA, Loscalzo J. Oxidative risk for atherothrombotic cardiovascular disease. Free. Radical. Bio. Med. 47: 1673–1706 (2009)CrossRefGoogle Scholar
  22. 22.
    Zhang XU. bai zuo gen fu bing de fa sheng tiao jian yu fang zhi cuo shi. Special Economic Animal and Plant. 13: 47 (2010)Google Scholar
  23. 23.
    Chen XF, Lu J, Ding D. bo zhong qi dui bai zuo zao qi chou tai ying xiang de yan jiu. China J. Chin. Mater. Med. 24: 211 (1999)Google Scholar
  24. 24.
    Li HY, Dai YJ, Xie CK. zhong yao bai zuo liu xun qian hou xiang dou su cheng fen han liang bi jiao. China J. Chin. Mater. Med. 16: 27–28 (1991)Google Scholar
  25. 25.
    He SS, Wu WJ, Tan R. Study on the stability of Angelica dahurica (Fisch ex.Hoffm.) extract. J. North Sichuan Med. Coll. 28: 6–9 (2013)Google Scholar
  26. 26.
    Litvin S, Mannheim CH, Miltz J. Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. J. Food Eng. 36: 103–111 (1998)CrossRefGoogle Scholar
  27. 27.
    Ratti C. Hot air and freeze-drying of high-value foods: a review. J. Food Eng. 49: 311–319 (2001)CrossRefGoogle Scholar
  28. 28.
    Shiau YJ, Jeng TL, Kao JL, Lai JS, Huang CH. Extraction of imperatorin from root slices and explants of Angelica dahurica. Journal of Taiwan Agricultural Research. 60: 101–114 (2011)Google Scholar
  29. 29.
    Liang YZ, Xie P, Chan K. Quality control of herbal medicines. J. Chromatogr. B. 812: 53–70 (2004)CrossRefGoogle Scholar
  30. 30.
    Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 40: 945–948 (1992)CrossRefGoogle Scholar
  31. 31.
    Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299: 152–178 (1999)CrossRefGoogle Scholar
  32. 32.
    Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161–169 (1994)CrossRefGoogle Scholar
  33. 33.
    Jia L, Sun HC, Yang TX, Bai BZB, Li CD. Dynamics and correlation analysis of physiology and medicinal components of Angelica dahurica. J. Jilin Agric. Univ. 30: 122–127 (2008)Google Scholar
  34. 34.
    Zhai JY, Wu W, Liao K, Zhang X, Hou K. Effects of soil factors on yield and quality of Angelica dahurica var. formosana. Chin. Tradit. Herb. Drugs. 41: 984–988 (2010)Google Scholar
  35. 35.
    Deng GG, Wei W, Yang XW, Zhang YB, Xu W, Gong NB, Lü Y, Wang FF. New coumarins from the roots of Angelica dahurica var. formosana cv. Chuanbaizhi and their inhibition on NO production in LPS-activated RAW264.7 cells. Fitoterapia. 101: 194–200 (2015)CrossRefGoogle Scholar
  36. 36.
    Frérot E, Decorzant E. Quantification of total furocoumarins in citrus oils by HPLC coupled with UV, fluorescence, and mass detection. J. Agr. Food. Chem. 52: 6879–6886 (2004)CrossRefGoogle Scholar
  37. 37.
    Chang Y, Zhang QH, Li J, Zhang L, Guo X, He J, Zhang P, Ma L, Deng Y, Zhang B, Gao X. Simultaneous determination of scopoletin, psoralen, bergapten, xanthotoxin, columbianetin acetate, imperatorin, osthole and isoimperatorin in rat plasma by LC–MS/MS for pharmacokinetic studies following oral administration of Radix Angelicae Pubescentis extract. J. Pharmaceut. Biomed. 77: 71–75 (2013)CrossRefGoogle Scholar
  38. 38.
    Liu Z, Jiang M, Lu X, Qin F, Song Y, Wen J, Li F. Simultaneous determination of pimpinellin, isopimpinellin and phellopterin in rat plasma by a validated UPLC–MS/MS and its application to a pharmacokinetic study after administration of Toddalia asiatica extract. J. Chromatogr. B. 891–892: 102–108 (2012)CrossRefGoogle Scholar
  39. 39.
    Feger W, Brandauer H, Gabris P, Ziegler H. Nonvolatiles of commercial lime and grapefruit oils separated by high-speed countercurrent chromatography. J. Agr. Food Chem. 54: 2242–2252 (2006)CrossRefGoogle Scholar
  40. 40.
    Zhao G, Peng C, Du W, Wang S. Simultaneous determination of imperatorin and its metabolites in vitro and in vivo by a GC-MS method: application to a bioavailability and protein binding ability study in rat plasma. Biomed. Chromatogr. 28: 947–956 (2014)CrossRefGoogle Scholar
  41. 41.
    Díaz-Maroto M, Pérez-Coello M, Cabezudo M. Effect of different drying methods on the volatile components of parsley (Petroselinum crispum L.). Eur. Food Res. Technol. 215: 227–230 (2002)CrossRefGoogle Scholar
  42. 42.
    Que F, Mao L, Fang X, Wu T. Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. Int. J. Food Sci. Tech. 43: 1195–1201 (2008)CrossRefGoogle Scholar
  43. 43.
    Matsuda H, Hirata N, Kawaguchi Y, Yamazaki M, Naruto S, Shibano M, Taniguchi M, Baba K, Kubo M. Melanogenesis stimulation in murine B16 melanoma cells by umberiferae plant extracts and their coumarin constituents. Biol. Pharm. Bull. 28: 1229–1233 (2005)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Wei-Hong Liang
    • 1
  • Tung-Wu Chang
    • 2
  • Yuh-Chyang Charng
    • 1
  1. 1.Department of AgronomyNational Taiwan UniversityTaipeiTaiwan, Republic of China
  2. 2.Hualien District Agricultural Research and Extension StationCouncil of Agriculture, Executive YuanHualienTaiwan, Republic of China

Personalised recommendations