Skip to main content
Log in

Effects of roasting conditions on physicochemical properties and antioxidant activities in Ginkgo biloba seeds

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 25 September 2018

This article has been updated

Abstract

The roasting treatment has been used to extend the shelf life of food and improves its quality, and eliminate or reduce toxic. In this study, we investigate the changes in the physicochemical properties and antioxidant activities of Ginkgo biloba seeds (GBS) according to the roasting temperature and duration. As the roasting temperature and duration increased, the pH (from 7.32 to 6.31) and total cyanide content (from 1.49 to 0.70 µg/g) decreased, whereas the titratable acidity (from 0.39 to 0.84%) increased. The antioxidant activities increased rapidly at 210 °C according to the increase in the roasting temperature and duration. The 4′-O-methylpyridoxine (MPN) content in the 210 °C heat treatment group decreased by more than 70% compared to the MPN content in the control group. These results suggest that heat-treated GBS could be used in food materials and medicines for decreasing cyanide and MPN contents as well as for increasing antioxidant compound contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 25 September 2018

    Unfortunately, first author Heung-Bin Lim’s affiliation was missed to include in the original version of this article. The affiliation of Heung-Bin Lim should be: Industrial Crop Science and Technology, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea.

Abbreviations

GBS:

Ginkgo biloba seeds

MPN:

4′-O-methylpyridoxine

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

ABTS:

2,2′-Azino-bis-(2-ethylbenzothiazoline-6-sulfonate)

HPLC:

High performance liquid chromatography

AEAC:

l-Ascorbic acid equivalent antioxidant capacity

References

  1. Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of shiitake (Lentinus edodes) mushroom. Food Chem. 99: 381–387 (2006)

    Article  CAS  Google Scholar 

  2. Wandsnider L. The roasted and the boiled: food composition and heat treatment with special emphasis on pitheaith cooking. J. Anthropol. Archaeol. 16: 1–48 (1997)

    Article  Google Scholar 

  3. Chan PC, Xia Q, Fu PP. Ginkgo Biloba leave extract: biological, medicinal, and toxicological effects. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol Rev. 25: 211–244 (2007)

    Article  CAS  Google Scholar 

  4. Kleijnen J, Knipschild P. Ginkgo biloba. Lancet 340: 1136–1139 (1992)

    Article  CAS  PubMed  Google Scholar 

  5. Wada K, Ishigaki S, Ueda K, Sakata M, Haga M. An antivitamin B6, 4′-methoxypyridoxine from the seed of Ginkgo biloba L. Chem. Pharm. Bull. 33: 3555–3557 (1985)

    Article  CAS  PubMed  Google Scholar 

  6. Leistner E, Drewke C. Ginkgo biloba and Ginkgotoxin. J. Nat. Prod. 73: 86–92 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. Tommasi F, Paciolla C, de pinto MC, De Gara L. Effects of storage temperature on viability, germination and antioxidant metabolism in Ginkgo biloba L. seeds. Plant Physiol. Biochem. 44: 359–368 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Park SB, Cho GS. Antimicrobial activity of extracts and fractions of Ginkgo biloba leaves, seed and outer seedcoat. J Korean Soc Food Sci Nutr 40: 7–13 (2011)

    Article  CAS  Google Scholar 

  9. Tredici PD. Ginkgos and people - a thousand years of interaction. Arnoldia 51: 2–15 (1991)

    Google Scholar 

  10. Deng Q, Wang L, Wei F, B Xie, F Huang, W Huang, J Shi, Q Huang, B Tian, S Xue. Functional properties of protein isolates, globulin and albumin extracted from Ginkgo biloba seeds. Food Chem. 124: 1458–1465 (2011)

    Article  CAS  Google Scholar 

  11. Jinap S, Wan Rosli WR, Russly AR, Nordin LM. Effect of roasting time and temperature on volatile component profiles during nib roasting of cocoa beans (Theobroma cacao). J. Sci. Food Agric. 77: 441–448 (1998)

    Article  CAS  Google Scholar 

  12. AOAC. Official Methods of Analysis. 17th ed. Method 934.01. Association of Official Analytical Communities, Gaithersburg, MD, USA (2006)

  13. AOAC. Official Methods of Analysis. 14th ed. Method 942.15. Association of Official Analytical Communities, Arlington, VA, USA (1984)

  14. Epstein J. Estimation of microquantities of cyanide. Anal. Chem. 19: 272–274 (1947)

    Article  CAS  Google Scholar 

  15. Singleton VL, Rossi JA Jr. Colorimetry of total phemolics with phosphomolybdic–phosphotungstic acid reagent. Am. J. Enol. Viticult. 16: 144–158 (1965)

    CAS  Google Scholar 

  16. Ouchemoukh S, Hachoud S, Boudraham H, Mokrani A, Louaileche H. Antioxidant activities of some dried fruits consumed in Algeria. LWT-Food Sci. Technol. 49: 329–332 (2012)

    Article  CAS  Google Scholar 

  17. Al ML, Dezmirean D, Adela M, Otilia B, Laslo L, Bogdanov S. Physicochemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 112: 863–867 (2009)

    Article  CAS  Google Scholar 

  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231–1237 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Suh JH, Yang DH, Lee BK, Eom HY, Kim UY, Kim JH, Lee HY, Han SB. Simultaneous determination of B group vitamins in supplemented food products by high performance liquid chromatography-diode array detection. Bull Korean Chem. Soc. 32: 2648–2656 (2011)

    Article  Google Scholar 

  20. Emily LB, Terri DB, Lester AW. Effect of cultivar and roasting method on composition of roasted soybeans. J. Sci. Food Agric. 89: 821–826 (2009)

    Article  CAS  Google Scholar 

  21. Yoon SK, Kim WJ. Effects of roasting conditions on quality and yields of barley tea. Korean J Food Sci Technol 21: 575–582 (1987).

    Google Scholar 

  22. Bae KM, Park SH, Jung KH, Kim MJ, Hong SH, Song YO, Lee HS. Effects of roasting conditions on physicochemical properties and sensory properties of Liriopis Tuber. J Korean Soc Food Sci Nutr 39: 1503–1508 (2010)

    Article  CAS  Google Scholar 

  23. Żyżelewicz D, Budryn G, Krysiak W, Oracz J, Nebesny E, Bojczuk M. Influence of roasting conditions on fatty acid composition and oxidative changes of cocoa butter extracted from cocoa bean of Forastero variety cultivated in Togo. Food Res. Int. 63: 328–343 (2014)

    Article  CAS  Google Scholar 

  24. Saunders J, Jervis F. The role of buffer salts in non-enzymatic browning. J. Sci. Food Agric. 17: 245–249 (1966)

    Article  CAS  Google Scholar 

  25. Wood LA, Shouse PJ. Standard reference materials: Use of standard light-sensitive paper for calibrating carbon arcs used in testing textiles for colorfastness to light (Special Publication 260-41). National Bureau of Standards, Washington, DC, USA, pp. 1–24 (1972)

    Google Scholar 

  26. Shakerardekani A, Karim R, Ghazali HM, Chin NL. Effect of roasting conditions on hardness, moisture content and colour of pistachio kernels. International Food Research journal 18: 723–729 (2011)

    Google Scholar 

  27. Hodge JE. Dehydrated foods: chemistry of browning reactions in model systems. J. Agric. Food Chem. 1: 928–943 (1953)

    Article  CAS  Google Scholar 

  28. Ahmed SB, Mahgoub SA, babiker BE. Changes in tannin and cyanide contents and diastic activity during germination and the effect of traditional processing on cyanide content of sorghum cultivars. Food Chem. 56: 159–162 (1996)

    Article  CAS  Google Scholar 

  29. Cardoso AP, Mirione E, Ernesto M, Massaza F, Cliff J, Haque MR, Bradbury JH. Processing of cassava roots to remove cyanogens. J. Food Compost. Anal. 18: 451–460 (2005)

    Article  CAS  Google Scholar 

  30. Cho HJ, Do BK, Shlm SM, Kwon HJ, Lee DH, Nah AH, Chol YJ, Lee SY. Determination of cyanogenic compounds in edible plants by ion chromatography. Toxicol. Res. 29: 143–147 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mikašauskaitė J, Ragažinskienė O, Maruška A. Variation of total amount of phenolic compounds, radical scavenging activity and volatile com pounds of Liriodendron tulipifera L. and Ginkgo biloba L. leaves extracts during different vegetation periods. Biologija 59: 175–186 (2013)

  32. Ellnain-Wojtaszek M. Phenolic acids from Ginkgo biloba L. Part I. Qualitative analysis of free and liberated by hydrolysis phenolic acids. Acta Pol. Pharm. 54: 225–228 (1997)

    CAS  PubMed  Google Scholar 

  33. Xu B. and Chang SKC. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J. Agric. Food Chem. 57: 4754–4764 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. Yoshino M, Murakami K. Interaction of iron with polyphenolic compounds, application to antioxidant characterization. Anal. Biochem. 257: 40–44 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Terpinc P, Polak T, Poklar N, Ulrih NP, Abramovic H. Effect of heat treatment of camelina (Camelina sativa) seeds on the antioxidant potential of their extracts. Food Chem. 97: 472–479 (2006)

    Article  CAS  Google Scholar 

  36. Yoshimura T, Udaka N, Morita J, Jinyu Z, Sasaki K, Kobayashi D, Wada K, Hori Y. High performance liquid chromatographic determination of ginkgotoxin and ginkgotoxin‐5′‐Glucoside in Ginkgo biloba seeds. J. Liq. Chromatogr. Related Technol. 29: 605–616 (2016)

    Article  CAS  Google Scholar 

  37. Kobayashi, D, Yoshimura T, Johno A, Sasaki K, Wada K. Toxicity of 4′-O-methylpyridoxine-5′-glucoside in Ginkgo biloba seeds. Food Chem. 126: 1198–1202 (2011)

    Article  CAS  Google Scholar 

  38. Fiehe K. Arenz A, Drewke C, Hemscheidt T, Williamson RT, Leistner E. Biosynthesis of 4′-O-methylpyridoxine (Ginkgotoxin) from primary precursors. J. Nat. Prod. 63: 185–189 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2017R1A6A3A11034208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, HB., Kim, DH. Effects of roasting conditions on physicochemical properties and antioxidant activities in Ginkgo biloba seeds. Food Sci Biotechnol 27, 1057–1066 (2018). https://doi.org/10.1007/s10068-018-0348-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0348-7

Keywords

Navigation