Skip to main content

GC–MS based metabolomics study of fermented stipe of Sparassis crispa

Abstract

GC–MS coupled with multivariate statistical analysis was performed to understand metabolites difference between pileus and stipe of Sparassis crispa (cauliflower mushroom). Metabolic changes of S. crispa after fermentation by different microorganisms were also investigated. PCA score plot showed a clear separation between pileus and stipe of S. crispa regardless of fermentation. However, OPLS-DA score plot showed clear separation among fermented S. crispa samples according to microbial strain used, indicating that both pileus and stipe fermented with the same strain showed similar pattern of metabolites. Fructose, lactic acid, citric acid, malic acid, and phosphoric acid were metabolites that contributed to the discrimination of fermented S. crispa samples. Results of this study provide novel insights into intrinsic characteristics of stipe of S. crispa which is cheaper than pileus as ingredient for alternative functional food.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Carvalho JCT, Perazzo FF, Machado L, Bereau D. Biologic activity and biotechnological development of natural products. BioMed Res. Int. Article ID 971745 (2013)

  2. Choi JH, Lee HJ, Kim S. Purification and antithrombotic activity of wulfase, a fibrinolytic enzyme from the fruit bodies of the edible and medicinal mushroom Sparassis crispa Wulf. ex. Fr. Appl. Biochem. Microbiol. 52: 608–614 (2016)

    Article  CAS  Google Scholar 

  3. Ohno N, Harada T, Masuzawa S, Miura NN, Adachi Y, Nakajima M, Yadomae T. Antitumor activity and hematopoietic response of a b-glucan extracted from an edible and medicinal mushroom Sparassis crispa Wulf.: Fr.(Aphyllophoromycetideae). Int. J. Med. Mushrooms 4: 13–26 (2002)

    Article  CAS  Google Scholar 

  4. Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Comparison of the Immunomodulating Activities of 1, 3-β-glucan Fractions from the Culinary-Medicinal Mushroom Sparassis crispa Wulf.: Fr.(Aphyllophoromycetideae). Int. J. Med. Mushrooms 8: 231–244 (2006)

    Article  CAS  Google Scholar 

  5. Yamamoto K, Kimura T, Sugitachi A, Matsuura N. Anti-angiogenic and anti-metastatic effects of β-1, 3-d-glucan purified from Hanabiratake, Sparassis crispa. Biol. Pharm. Bull. 32: 259–263 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Chandrasekaran G, Kim GJ, Shin HJ. Purification and characterisation of an alkaliphilic esterase from a culinary medicinal mushroom, Sparassis crispa. Food Chem. 124: 1376–1381 (2011)

    Article  CAS  Google Scholar 

  7. Seo SH, Park SE, Moon YS, Lee YM, Na CS, Son HS. Component analysis and immuno-stimulating activity of Sparassis crispa stipe. Korean J. Food Sci. Technol. 48: 515–520 (2016)

    Article  Google Scholar 

  8. Kim EJ, Seo SH, Park SE, Kang MS, Son HS. Effects of fermented Sparassis crispa stipe extract supplemented diet on the immune responses of Philippines eel, Anguilla bicolor. J. Korean Soc. Food Sci. Nutr. 46: 1151–1157 (2017)

    Google Scholar 

  9. Hill D, Sugrue I, Arendt E, Hill C, Stanton C, Ross RP. Recent advances in microbial fermentation for dairy and health. F1000Res 6: 751 (2017).

  10. Zhang Z, Lv G, Pan H, Fan L, Soccol CR, Pandey A. Production of powerful antioxidant supplements via solid-state fermentation of wheat (Triticum aestivum Linn.) by cordyceps militaris. Food Technol. Biotechnol. 50: 32–39 (2012)

    Google Scholar 

  11. Liu Y, Xie XX, Ibrahim SA, Khaskheli SG, Yang H, Wang YF, Huang W. Characterization of Lactobacillus pentosus as a starter culture for the fermentation of edible oyster mushrooms (Pleurotus spp.). LWT-Food Sci. Technol. 68: 21–26 (2016)

    CAS  Google Scholar 

  12. Zhang D, Zhang Y, Liu B, Jiang Y, Zhou Q, Wang J, Wang H, Xie J, Kuang Q. Effect of replacing fish meal with fermented mushroom bran hydrolysate on the growth, digestive enzyme activity, and antioxidant capacity of allogynogenetic crucian carp (Carassius auratus gibelio). Turk. J. Fish. Aquat. Sci. 17: 1039–1048 (2017)

    Article  Google Scholar 

  13. Jabłońska-Ryś E, Sławińska A, Szwajgier D. Effect of lactic acid fermentation on antioxidant properties and phenolic acid contents of oyster (Pleurotus ostreatus) and chanterelle (Cantharellus cibarius) mushrooms. Food Sci. Biotechnol. 25: 439–444 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang HS, Choi YJ, Oh HH, Moon JS, Jung HK, Kim KJ, Choi BS, Lee JW, Huh CK. Antioxidative activity of mushroom water extracts fermented by lactic acid bacteria. J. Korean Soc. Food Sci. Nutr. 43: 80–85 (2014)

    Article  Google Scholar 

  15. Park SE, Seo SH, Moon YS, Lee YM, Na CS, Son HS. Antioxidant and immunological activities of Sparassis crispa fermented with Meyerozyma guilliermondii FM. J. Korean Soc. Food Sci. Nutr. 45: 1398–1405 (2016)

    Article  Google Scholar 

  16. More T, RoyChoudhury S, Gollapalli K, Patel SK, Gowda H, Chaudhury K, Rapole S. Metabolomics and its integration with systems biology: PSI 2014 conference panel discussion report. J. Proteomics 127: 73–79 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, Moritz T. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal. Chem. 76: 1738–1745 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Khakimov B, Mongi RJ, Sørensen KM, Ndabikunze BK, Chove BE, Engelsen SB. A comprehensive and comparative GC–MS metabolomics study of non-volatiles in Tanzanian grown mango, pineapple, jackfruit, baobab and tamarind fruits. Food Chem. 213: 691–699 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Park SE, Yoo SA, Seo SH, Lee KI, Na CS, Son HS. GC–MS based metabolomics approach of Kimchi for the understanding of Lactobacillus plantarum fermentation characteristics. LWT-Food Sci. Technol. 68: 313–321 (2016)

    Article  CAS  Google Scholar 

  20. Jang GJ, Kim DW, Gu EJ, Song SH, Lee JI, Lee SB, Kim JH, Ham KS, Kim HJ. GC/MS-based metabolomic analysis of the radish water Kimchi, Dongchimi, with different salts. Food Sci. Biotechnol. 24: 1967–1972 (2015)

    Article  CAS  Google Scholar 

  21. Seo SH, Park SE, Yoo SA, Lee KI, Na CS, Son HS. Metabolite profiling of Makgeolli for the understanding of yeast fermentation characteristics during fermentation and aging. Process Biochem. 51: 1363–1373 (2016)

    Article  CAS  Google Scholar 

  22. Ponnusamy K, Lee S, Lee CH. Time-dependent correlation of the microbial community and the metabolomics of traditional barley nuruk starter fermentation. Biosci. Biotechnol. Biochem. 77: 683–690 (2013)

    Article  PubMed  Google Scholar 

  23. Benkeblia N, Shinano T, Osaki M. Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC–MS analysis. Metabolomics 3: 297–305 (2007)

    Article  CAS  Google Scholar 

  24. Park SE, Seo SH, Lee KI, Na CS, Son HS, Metabolite profiling of fermented ginseng extracts by gas chromatography mass spectrometry. J. Ginseng Res. 42: 57–67 (2018)

    Article  PubMed  Google Scholar 

  25. Avenoza A, Busto JH, Canal N, Peregrina JM. Time course of the evolution of malic and lactic acids in the alcoholic and malolactic fermentation of grape must by quantitative 1H NMR (qHNMR) spectroscopy. J. Agric. Food Chem. 54: 4715–4720 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl. Environ. Microbiol. 74: 2766–2777 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guillaume C, Delobel P, Sablayrolles JM, Blondin B. Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Appl. Environ. Microbiol. 73: 2432–2439 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phan CW, Sabaratnam V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 96: 863–873 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Burton K, Noble R. The influence of flush number, bruising and storage temperature on mushroom quality. Postharvest Biol. Technol. 3: 39–47 (1993)

    Article  Google Scholar 

  30. Kimura T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. Biomed Res. Int. Article ID 982317 (2013)

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Seok Son.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seo, SH., Park, SE., Kim, EJ. et al. GC–MS based metabolomics study of fermented stipe of Sparassis crispa. Food Sci Biotechnol 27, 1111–1118 (2018). https://doi.org/10.1007/s10068-018-0329-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0329-x

Keywords

  • Metabolomics
  • Sparassis crispa
  • Stipe
  • GC–MS
  • Fermentation