Phytochemical and pharmacological screening of Sargassium vulgare from Suez Canal, Egypt

  • Mohamed A. Shreadah
  • Nehad M. Abd El Moneam
  • Samy A. Al-Assar
  • Asmaa Nabil-Adam
Article

Abstract

The current study investigates the phytochemical and pharmaceutical activities of Sargassium vulgare (SVE) collected from the Suez Canal. The prescreening using cytotoxicity was tested against hepatocellular carcinoma cell lines. Furthermore the SVE inhibit cell growth effectively with IC50 = 20.8 µg/ml. The pharmacological studies revealed high antioxidant capacity at all examined concentrations. On the meantime, anticancer assay carried out using tyrosine kinase (PTK) and sphingosine kinase 1 inhibitor screening assays revealed inhibition with 75.73 and 80.01%; respectively. Furthermore, the anti-inflammatory profiling revealed that the activities against COX1, COX2, IL6 and TNF were 77.39, 88.35, 75.38 and 71.24%; respectively. Additionally, the anti-Alzheimer results showed high activity at 1 mg with 76.33%. Finally the antiviral activities using reverse transcriptase inhibition assay give 92.24%. Consequently, it can be easily conclude that the SVE collected from the Suez Canal are excellent source of natural products for nutritional and pharmaceutical applications.

Keywords

Seaweeds Suez Canal Cytotoxic Anti-oxidant Anti-Alzheimer Anti-cancer Anti-inflammatory Anti-viral 

Notes

Acknowledgements

I appreciate the effort for all authors to complete this work and their valuable contributions.

References

  1. 1.
    Abdel-Monein, NM, El-Aassar, SA, Shreadah, MA, Nabil-Adam, A. Isolation and identification of Psudomance Sp associated with the marine sponge, Hyrtios aff. Erectus, from the Red sea; Egypt and screening of metabolic pathways NRPs and PKS. Journal of pure & Applied Microbiology. 11(3), 1299–1311, (2017a).Google Scholar
  2. 2.
    Abdel-Monein, NM, Shreadah, MA, El-Aassar, SA, Nabil-Adam, A. Protective role of antioxidants capacity of Hyrtios aff. Erectus sponge extract against mixture of persistent organic pollutants (POPs)-induced hepatic toxicity in mice liver: biomarkers and ultrastructural study” Environmental Science and Pollution Research. 1–12, (2017b). DOI  https://doi.org/10.10071/s11356-017-9805-8.
  3. 3.
    Abdel-Monein, NM, Yacout, GA, Aboul-Ela, HM, Shreadah, MA. Hepatoprotective Activity of Chitosan Nanocarriers Loaded With the Ethyl Acetate Extract of A stenotrophomonas sp. Bacteria Associated with the Red Sea Sponge Amphimedon Ochracea In CCl4 Induced Hepatotoxicity in Rats. Advances in Bioscience and Biotechnology (ABB), 8(1), 27–50, (2017c).Google Scholar
  4. 4.
    Shreadah, MA, Abdel-Monein, NM, El-Aassar, SA, Nabil-Adam, A. The Ameliorative Role of a Marine Sponge Extract against Mixture of Persistent Organic Pollutants induced Changes in Hematological Parameters in Mice. Expert Opinion Environmental Biology (EOEB), 6(2), (2017).  https://doi.org/10.4172/2325-9655.1000143b
  5. 5.
    Elkomy, RG, Ibraheem, IB, Shreadah, MA, Mohammed, R. Optimal Conditions for Antimicrobial Activity Production from Two Microalgae Chlorella marina and Nevicula F. delicatul. Journal of Pure and Applied Microbiology, 9(4): 2725–2732, (2015).Google Scholar
  6. 6.
    Elkomy, RG, Ibraheem, IB, Shreadah, MA, Mohammed, R, Ismael, AA. Antibacterial and Antifungal Activity of Three Microalgae Isolated from Egyptian Coast of the Mediterranean Sea”. Journal of Pure and Applied Microbiology, 9(4), 2751–2758, (2015).Google Scholar
  7. 7.
    Alghazeer, R, Ibrahim, A, Abdulaziz, A, Abouamer, K (2016). In-vitro antioxidant activity of five selected species of Libyan algae. Int. J. Med. Pharm. Res., 4(1), 1–9, (2016).Google Scholar
  8. 8.
    Mohy-Eldin, SM, El-Ahwany, AMD. Bioactivity and phytochemical constituents of marine Red seaweed (Jania rubens, Corallina mediterranea and Petrocladia capillacea). Journal of Taibah University for Science, 10(4), 471–484, (2016).CrossRefGoogle Scholar
  9. 9.
    Taga, MS, Miller, EE, Pratt, DE. Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 61(5), 928–931, (1984).CrossRefGoogle Scholar
  10. 10.
    Zhishen,J., Mengcheng,T. and Jianming,W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem, 64(4),555–559, (1999).CrossRefGoogle Scholar
  11. 11.
    Sun, B, Richardo-Da-Silvia, JM, Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem, 46, 4267–4274, (1998).CrossRefGoogle Scholar
  12. 12.
    Thaipong,K, Boonprakob,U, Crosby, K, Cisneros-Zevallos, L, Byrne, DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19 (6–7): 669–675, (2006).CrossRefGoogle Scholar
  13. 13.
    AOAC. Official Methods analysis of association of offcialanaltical chemists 15th End., Association of official analytical chemists.Washington DC., USA. (1990).Google Scholar
  14. 14.
    Singh, G, Kumar, P. Extraction, gas chromatography–mass spectrometry analysis and screening of fruits of Terminalia chebula Retz. for its antimicrobial potential, Pharmacognosy Research,5(3): 162–168.  https://doi.org/10.4103/0974-8490.112421, (2013).
  15. 15.
    Kosanic, M, Rankovic, B, Stanojkovic, T. Biological activities of two macroalgae from Adriatic coast of Montenegro. Saudi J Biol Sci, 22(4): 390–397, (2015).CrossRefGoogle Scholar
  16. 16.
    Amarowicz R., Naczk M., Zadernowski R., Shahidi F. Antioxidant activity of condensed tannins of beach pea, Canola hulls, evening primrose, and faba bean. Journal of Food Lipids, 7: 195–205, (2000).CrossRefGoogle Scholar
  17. 17.
    Chkraborty, K, Lipton, AP, Paul Raj, R, Vijayan, KK. Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chem. 119: 1399–1408, (2010).CrossRefGoogle Scholar
  18. 18.
    Moyo, SJ, Aboud, S, Kasubi, M, Lyamuya, EF, Maselle SY. Antimicrobial resistance among producers and non-producers of extended spectrum beta- lactamases in urinary isolates at a tertiary Hospital in Tanzania, A Short Report. BMC Research Notes, 3:348, (2010).  https://doi.org/10.1186/1756-0500-3-348.CrossRefGoogle Scholar
  19. 19.
    Fonteh, PN, Keter, FK. Meyer, D. New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: potential for incorporation into virostatic cocktails. J Inorg Biochem,105:1173–1180, (2011).CrossRefGoogle Scholar
  20. 20.
    Hegazy, MF, Mohamed, TA, Elshamy, AI, Hassanien, AA, Abdel Azimd,NS, Shreadah, MA, Abdelgawad, II, Elkady, EM. A New Steroid from the Red Sea Soft Coral Lobophytum Lobophytum. Natural Products Research, 30, 340–344, (2015).CrossRefGoogle Scholar
  21. 21.
    Behzad H, Ibarra MA, Mineta K, Gojobori T. Metagenomic studies of the Red Sea. Gene 576: 717–723, (2016).CrossRefGoogle Scholar
  22. 22.
    Jeeva, S, Antonisamy, JM, Domettila, C, Anantham, B, Mahesh, M. Preliminary phytochemical studies on some selected seaweeds from Gulf of Mannar India. Asian Pac. J. Trop. Biomed. 2 (1): S30–S33, (2012).CrossRefGoogle Scholar
  23. 23.
    Fahmy, MA, Abdel Fattah, LM, Abdel-Halim, AM, Abdel Nabi,MA, Abo-El-Khair, EM, Ahdy, HH, Hemeilly, A, Abu El-Soud, A, and Shreadah, MA. Evaluations of the Coastal Water Quality of the Egyptian Red Sea during 2011-2013. J. Environ. Prot., 7(12), 1810–1834, (2016).CrossRefGoogle Scholar
  24. 24.
    Mehdinezhad, N, Ghannadi, A, Yegdaneh, A. Phytochemical and biological evaluation of some Sargassum species from Persian Gulf. Research Pharmaceutical Science, 11(3): 243–249, (2016).Google Scholar
  25. 25.
    Gauthier S, Leuzy A, Rosa-Neto P. How can we improve transfer of outcomes from randomized clinical trials to clinical practice with disease-modifying drugs in Alzheimer’s disease?, Neurodegener Dis, 13(2-3), 197–199, (2014).Google Scholar
  26. 26.
    Natarajan,S, Shanmugiahtheva, KP, Kasi PD. Cholinesterase inhibitors from Sargassum and Gracilaria gracilis: Seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Journal of Natural Product Research, 23(4), 355–369, (2009).CrossRefGoogle Scholar
  27. 27.
    Simmons, T. L., Andrianasolo, E., McPhail, K., Flatt, P.and Gerwick, W. H. Marine natural products as anticancer drugs. Molocular Cancer Therapy, 4(2), 333–342, (2005).Google Scholar
  28. 28.
    Lee, JC, Hou, MF, Huang, HW, Chang, FR, Yeh, CC, Tang, JY, Chang, HW. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell International, 13, 55, (2013).CrossRefGoogle Scholar
  29. 29.
    Zhou Y, Chen C, Johansson MJ. The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Research, 41(11):5669–5678, (2013).CrossRefGoogle Scholar
  30. 30.
    De Almeida, CLF, Falcão, H de S., Lima, GR de M, Montenegro, C de A, Lira, NS, de Athayde-Filho, PF, Batista, LM. Bioactivities from Marine Algae of the Genus Gracilaria. International Journal of Molecular Science, 12(7), 4550–4573, (2011).Google Scholar
  31. 31.
    Vaughan, VC, Hassing, MR, Lewandowski, PA. Marine polyunsaturated fatty acids and cancer therapy. British Journal of Cancer, 108(3), 486–492, (2013). http://doi.org/10.1038/bjc.2012.586 CrossRefGoogle Scholar
  32. 32.
    Patel, S. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech, 2(3), 171–185, (2012). http://doi.org/10.1007/s13205-012-0061-9 Google Scholar
  33. 33.
    Gammone, MA, Riccioni, G, D’Orazio, N. Marine Carotenoids against Oxidative Stress: Effects on Human Health, Marine Drugs,13, 6226–6246, (2016).  https://doi.org/10.3390/md13106226 CrossRefGoogle Scholar
  34. 34.
    Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutration Review, 68:280–289, (2010) [PubMed]Google Scholar
  35. 35.
    Hoesel, B, Schmid, JA. The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer, 12, 86, (2013). http://doi.org/10.1186/1476-4598-12-86.CrossRefGoogle Scholar
  36. 36.
    Wojdasiewicz, P, Poniatowski, ŁA,Szukiewicz, D. The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediators of Inflammation. (2014), 561459. http://doi.org/10.1155/2014/561459.

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mohamed A. Shreadah
    • 1
  • Nehad M. Abd El Moneam
    • 2
  • Samy A. Al-Assar
    • 3
  • Asmaa Nabil-Adam
    • 1
  1. 1.Marine Biotechnology and Natural Products Lab (MBNP)National Institute of Oceanography and Fisheries (NIOF)AlexandriaEgypt
  2. 2.Biochemistry Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  3. 3.Botany and Microbiology Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations