Skip to main content
Log in

Kiwifruit of Actinidia eriantha cv. Bidan has in vitro antioxidative, anti-inflammatory and immunomodulatory effects on macrophages and splenocytes isolated from male BALB/c mice

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Kiwifruit is known to contain considerable amount of antioxidative phenolics. The objective of this study was to evaluate the antioxidative, anti-inflammatory and immunomodulatory effects of Actinidia eriantha cv. Bidan and A. deliciosa cv. Hayward kiwifruits. The antioxidant capacity of kiwifruit was measured with the DPPH, ABTS and ORAC assays, and was significantly (p < 0.05) higher in cv. Bidan than in cv. Hayward. The production of proinflammatory cytokines interleukin-6, interleukin-12 and tumor necrosis factor-α by peritoneal macrophages from male BALB/c mice was significantly (p < 0.05) lower following treatment of cv. Bidan extracts than after treatment with lipopolysaccharide alone. Cv. Bidan extracts significantly (p < 0.05) increased the proliferation of splenocytes stimulated with an anti-CD3 antibody and significantly (p < 0.05) reduced their interferon-γ secretion. Taken together, these findings suggest that cv. Bidan kiwifruit is rich in antioxidants and may be a source of anti-inflammatory and immunomodulatory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M, Stehle P, Watzl B. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 51: 637–663 (2012)

    Article  CAS  Google Scholar 

  2. Péneau S, Galan P, Jeandel C, Ferry M, Andreeva V, Hercberg S, Kesse-Guyot E, The SU.VI.MAX 2 Research Group. Fruit and vegetable intake and cognitive function in the SU.VI.MAX 2 prospective study. Am. J. Clin. Nutr. 94: 1295–1303 (2011)

    Article  Google Scholar 

  3. Park Y-S, Leontowicz H, Leontowicz M, Namiesnik J, Suhaj M, Milena Cvikrová, Martincová O, Weisz M, Gorinstein S. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. J. Food Compos. Anal. 24: 963–970 (2011)

    Article  CAS  Google Scholar 

  4. Lim YJ, Oh C-S, Park Y-D, Kim D-O, Kim U-J, Cho Y-S, Eom SH. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23: 943–949 (2014)

    Article  CAS  Google Scholar 

  5. Chun OK, Kim D-O, Smith N, Schroeder D, Han JT, Lee CY. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food. Agric. 85: 1715–1724 (2005)

    Article  CAS  Google Scholar 

  6. Hwang J-S, Cho CH, Baik M-Y, Park S-K, Heo HJ, Cho Y-S, Kim D-O. Effects of freeze-drying on antioxidant and anticholinesterase activities in various cultivars of kiwifruit (Actinidia spp.). Food Sci. Biotechnol. 26: 221–228 (2017)

    Article  CAS  Google Scholar 

  7. Lee I, Lee BH, Eom SH, Oh C-S, Kang H, Cho Y-S, Kim D-O. Antioxidant capacity and protective effects on neuronal PC-12 cells of domestic bred kiwifruit. Korean J. Hort. Sci. Technol. 33: 259–267 (2015)

    Article  CAS  Google Scholar 

  8. Lee I, Im S, Jin C-R, Heo HJ, Cho Y-S, Baik M-Y, Kim D-O. Effect of maturity stage at harvest on antioxidant capacity and total phenolics in kiwifruits (Actinidia spp.) grown in Korea. Hort. Environ. Biotechnol. 56: 841–848 (2015)

    CAS  Google Scholar 

  9. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20: 1126–1167 (2014)

    Article  CAS  Google Scholar 

  10. Hughes DA. Effects of dietary antioxidants on the immune function of middle-aged adults. Proc. Nutr. Soc. 58: 79–84 (1999)

    Article  CAS  Google Scholar 

  11. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 15: 71 (2016)

    Article  Google Scholar 

  12. González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Fruit polyphenols, immunity and inflammation. Br. J. Nutr. 104: S15–S27 (2010)

    Article  Google Scholar 

  13. Park Y-S, Namiesnik J, Vearasilp K, Leontowicz H, Leontowicz M, Barasch D, Nemirovski A, Trakhtenberg S, Gorinstein S. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars. Food Chem. 165: 354–361 (2014)

    Article  CAS  Google Scholar 

  14. Fiorentino A, D’Abrosca B, Pacifico S, Mastellone C, Scognamiglio M, Monaco P. Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. J. Agric. Food Chem. 57: 4148–4155 (2009)

    Article  CAS  Google Scholar 

  15. Shin M-S, Park JY, Lee J, Yoo HH, Hahm D-H, Lee SC, Lee S, Hwang GS, Jung K, Kang KS. Anti-inflammatory effects and corresponding mechanisms of cirsimaritin extracted from Cirsium japonicum var. maackii Maxim. Bioorg. Med. Chem. Lett. 27: 3076–3080 (2017)

    Article  CAS  Google Scholar 

  16. Hwang SJ, Kim Y-W, Park Y, Lee H-J, Kim K-W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 63: 81–90 (2014)

    Article  CAS  Google Scholar 

  17. Iwasawa H, Morita E, Ueda H, Yamazaki M. Influence of kiwi fruit on immunity and its anti-oxidant effects in mice. Food Sci. Technol. Res. 16: 135–142 (2010)

    Article  CAS  Google Scholar 

  18. Kim D-O, Lee CY. Comprehensive study of vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 44: 253–273 (2004)

    Article  CAS  Google Scholar 

  19. Singleton VL, Rossi JA, Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144–158 (1965)

    CAS  Google Scholar 

  20. Kim D-O, Padilla-Zakour OI, Griffiths PD. Flavonoids and antioxidant capacity of various cabbage genotypes at juvenile stage. J. Food Sci. 69: C685–C689 (2004)

    Article  CAS  Google Scholar 

  21. Kim D-O, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 50: 3713–3717 (2002)

    Article  CAS  Google Scholar 

  22. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50: 4437–4444 (2002)

    Article  CAS  Google Scholar 

  23. Lim D, Kim W, Lee M-G, Heo HJ, Chun OK, Kim D-O. Evidence for protective effects of coffees on oxidative stress-induced apoptosis through antioxidant capacity of phenolics. Food Sci. Biotechnol. 21: 1735–1744 (2012)

    Article  CAS  Google Scholar 

  24. Park YS, Kim BW, Kim T-C, Jang HG, Chon SU, Cho JY, Jiang SH, Heo BG. Physiological activity of methanol extracts from Korean kiwifruits. Korean J. Hort. Sci. Technol. 26: 495–500 (2008)

    CAS  Google Scholar 

  25. Du G, Li M, Ma F, Liang D. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 113: 557–562 (2009)

    Article  CAS  Google Scholar 

  26. Pal RS, Kumar VA, Arora S, Sharma AK, Kumar V, Agrawal S. Physicochemical and antioxidant properties of kiwifruit as a function of cultivar and fruit harvested month. Braz. Arch. Biol. Technol. 58: 262–271 (2015)

    Article  CAS  Google Scholar 

  27. Scalzo J, Politi A, Pellegrini N, Mezzetti B, Battino M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21: 207–213 (2005)

    Article  CAS  Google Scholar 

  28. Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VGM, Talla V, Verma V, Kaur N, Nagpal R. Anti-inflammatory treatments for chronic diseases: a review. Inflamm. Allergy Drug Targets 12: 349–361 (2013)

    Article  CAS  Google Scholar 

  29. Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. Int. J. Mol. Sci. 17: 921 (2016)

    Article  Google Scholar 

  30. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity in inflammation. Cytometry A 85A: 36–42 (2014)

    Article  CAS  Google Scholar 

  31. Semenzato G. Tumour necrosis factor: a cytokine with multiple biological activities. Br. J. Cancer 61: 354–361 (1990)

    Article  CAS  Google Scholar 

  32. Edmunds SJ, Roy NC, Love DR, Laing WA. Kiwifruit extracts inhibit cytokine production by lipopolysaccharide-activated macrophages, and intestinal epithelial cells isolated from IL10 gene deficient mice. Cell. Immunol. 270: 70–79 (2011)

    Article  CAS  Google Scholar 

  33. Xue W-Z, Yang Q-Q, Chen Y, Zou R-X, Xing D, Xu Y, Liu Y-S, Wang H-L. Kiwifruit alleviates learning and memory deficits induced by Pb through antioxidation and inhibition of microglia activation in vitro and in vivo. Oxid. Med. Cell. Longev. 2017: 5645324 (2017)

    Article  Google Scholar 

  34. Min S-W, Ryu S-N, Kim D-H. Anti-inflammatory effects of black rice, cyanidin-3-O-β-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol. 10: 959–966 (2010)

    Article  CAS  Google Scholar 

  35. Kim M-C, Kim S-J, Kim D-S, Jeon Y-D, Park SJ, Lee HS, Um J-Y, Hong S-H. Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages. Immunopharmacol. Immunotoxicol. 33: 525–532 (2011)

    Article  CAS  Google Scholar 

  36. Lin J-Y, Tang C-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 101: 140–147 (2007)

    Article  CAS  Google Scholar 

  37. Park E-J, Kim B, Eo H, Park K, Kim Y, Lee HJ, Son M, Chang Y-S, Cho S-H, Kim S, Jin M. Control of IgE and selective TH1 and TH2 cytokines by PG102 isolated from Actinidia arguta. J. Allergy Clin. Immunol. 116: 1151–1157 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agricultural Biotechnology Development Program (Project No. 114076-3), Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Ok Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YE., Cho, CH., Kang, H. et al. Kiwifruit of Actinidia eriantha cv. Bidan has in vitro antioxidative, anti-inflammatory and immunomodulatory effects on macrophages and splenocytes isolated from male BALB/c mice. Food Sci Biotechnol 27, 1503–1511 (2018). https://doi.org/10.1007/s10068-018-0321-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0321-5

Keywords

Navigation